01011010000101 1010101011m|il1 01001011
00007101101040101100111010100101

10110000101101610101100111010

I()DIOI'ID‘I
0010110101610110011101010040110100 K1

ADUATE TOPICS
in COMPU ‘SCIENCE

A concise
Introduction
to Data
compression

@ Springer UTics

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science' (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational
and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and
modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory board, and contain
numerous examples and problems. Many include fully worked solutions.

Also in this series

Iain D. Craig
Object-Oriented Programming Languages: Interpretation
978-1-84628-773-2

Max Bramer
Principles of Data Mining
978-1-84628-765-7

Hanne Riis Nielson and Flemming Nielson
Semantics with Applications: An Appetizer
978-1-84628-691-9

Michael Kifer and Scott A. Smolka
Introduction to Operating System Design and Implementation: The OSP 2 Approcah
978-1-84628-842-5

Phil Brooke and Richard Paige
Practical Distributed Processing
978-1-84628-840-1

Frank Klawonn
Computer Graphics with Java
978-1-84628-847-0

David Salomon

A Concise Introduction
to Data Compression

@ Springer

Professor David Salomon (emeritus)
Computer Science Department
California State University
Northridge, CA 91330-8281, USA
email: david.salomon@csun.edu

Series editor
Ian Mackie, Ecole Polytechnique, France and King's College London, UK

Adbvisory board

Samson Abramsky, University of Oxford, UK

Chris Hankin, Imperial College London, UK

Dexter Kozen, Cornell University, USA

Andrew Pitts, University of Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA

Tain Stewart, University of Durham, UK

David Zhang, The Hong Kong Polytechnic University, Hong Kong

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007939563

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN 978-1-84800-071-1 e-ISBN 978-1-84800-072-8

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the
case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

Printed on acid-free paper

987654321

springer.com

This book is dedicated to you, the reader!

Nothing is more impossible than to write
a book that wins every reader’'s approval.

—NMiguel de Cervantes

Preface

It is virtually certain that a reader of this book is both a computer user and an Internet
user, and thus the owner of digital data. More and more people all over the world
generate, use, own, and enjoy digital data. Digital data is created (by a word processor,
a digital camera, a scanner, an audio A/D converter, or other devices), it is edited
on a computer, stored (either temporarily, in memory, less temporarily, on a disk, or
permanently, on an optical medium), transmitted between computers (on the Internet
or in a local-area network), and output (printed, watched, or played, depending on its
type).

These steps often apply mathematical methods to modify the representation of the
original digital data, because of three factors, time/space limitations, reliability (data
robustness), and security (data privacy). These are discussed in some detail here:

The first factor is time/space limitations. It takes time to transfer even a single
byte either inside the computer (between the processor and memory) or outside it over
a communications channel. It also takes space to store data, and digital images, video,
and audio files tend to be large. Time, as we know, is money. Space, either in memory
or on our disks, doesn’t come free either. More space, in terms of bigger disks and
memories, is becoming available all the time, but it remains finite. Thus, decreasing the
size of data files saves time, space, and money—three important resources. The process
of reducing the size of a data file is popularly referred to as data compression, although
its formal name is source coding (coding done at the source of the data, before it is
stored or transmitted).

In addition to being a useful concept, the idea of saving space and time by com-
pression is ingrained in us humans, as illustrated by (1) the rapid development of nan-
otechnology and (2) the quotation at the end of this Preface.

The second factor is reliability. We often experience noisy telephone conversations
(with both cell and landline telephones) because of electrical interference. In general,
any type of data, digital or analog, sent over any kind of communications channel may
become corrupted as a result of channel noise. When the bits of a data file are sent
over a computer bus, a telephone line, a dedicated communications line, or a satellite
connection, errors may creep in and corrupt bits. Watching a high-resolution color image
or a long video, we may not be able to tell when a few pixels have wrong colors, but other

viii Preface

types of data require absolute reliability. Examples are an executable computer program,
a legal text document, a medical X-ray image, and genetic information. Change one bit
in the executable code of a program, and the program will not run, or worse, it may run
and do the wrong thing. Change or omit one word in a contract and it may reverse its
meaning. Reliability is therefore important and is achieved by means of error-control
codes. The formal name of this mathematical discipline is channel coding, because these
codes are employed when information is transmitted on a communications channel.

The third factor that affects the storage and transmission of data is security. Gener-
ally, we do not want our data transmissions to be intercepted, copied, and read on their
way. Even data saved on a disk may be sensitive and should be hidden from prying eyes.
This is why digital data can be encrypted with modern, strong encryption algorithms
that depend on long, randomly-selected keys. Anyone who doesn’t possess the key and
wants access to the data may have to resort to a long, tedious process of either trying
to break the encryption (by analyzing patterns found in the encrypted file) or trying
every possible key. Encryption is especially important for diplomatic communications,
messages that deal with money, or data sent by members of secret organizations. A
close relative of data encryption is the field of data hiding (steganography). A data file
A (a payload) that consists of bits may be hidden in a larger data file B (a cover) by
taking advantage of “holes” in B that are the result of redundancies in the way data is
represented in B.

Overview and goals

This book is devoted to the first of these factors, namely data compression. It
explains why data can be compressed, it outlines the principles of the various approaches
to compressing data, and it describes several compression algorithms, some of which are
general, while others are designed for a specific type of data.

The goal of the book is to introduce the reader to the chief approaches, methods,
and techniques that are currently employed to compress data. The main aim is to start
with a clear overview of the principles behind this field, to complement this view with
several examples of important compression algorithms, and to present this material to
the reader in a coherent manner.

Organization and features

The book is organized in two parts, basic concepts and advanced techniques. The
first part consists of the first three chapters. They discuss the basic approaches to data
compression and describe a few popular techniques and methods that are commonly
used to compress data. Chapter 1 introduces the reader to the important concepts of
variable-length codes, prefix codes, statistical distributions, run-length encoding, dictio-
nary compression, transforms, and quantization. Chapter 2 is devoted to the important
Huffman algorithm and codes, and Chapter 3 describes some of the many dictionary-
based compression methods.

The second part of this book is concerned with advanced techniques. The original
and unusual technique of arithmetic coding is the topic of Chapter 4. Chapter 5 is
devoted to image compression. It starts with the chief approaches to the compression of
images, explains orthogonal transforms, and discusses the JPEG algorithm, perhaps the
best example of the use of these transforms. The second part of this chapter is concerned

Preface ixX

with subband transforms and presents the WSQ method for fingerprint compression as
an example of the application of these sophisticated transforms. Chapter 6 is devoted
to the compression of audio data and in particular to the technique of linear predic-
tion. Finally, other approaches to compression—such as the Burrows—Wheeler method,
symbol ranking, and SCSU and BOCU-1—are given their due in Chapter 7.

The many exercises sprinkled throughout the text serve two purposes, they illumi-
nate subtle points that may seem insignificant to readers and encourage readers to test
their knowledge by performing computations and obtaining numerical results.

Other aids to learning are a prelude at the beginning of each chapter and various
intermezzi where interesting topics, related to the main theme, are examined. In addi-
tion, a short summary and self-assessment exercises follow each chapter. The glossary
at the end of the book is comprehensive, and the index is detailed, to allow a reader to
easily locate all the points in the text where a given topic, subject, or term appear.

Other features that liven up the text are puzzles (indicated by with answers at
the end of the book) and various boxes with quotations or with biographical information
on relevant persons.

Target audience

This book was written with undergraduate students in mind as the chief readership.
In general, however, it is aimed at those who have a basic knowledge of computer science;
who know something about programming and data structures; who feel comfortable with
terms such as bit, mega, ASCII, file, I/0, and binary search; and who want to know how
data is compressed. The necessary mathematical background is minimal and is limited
to logarithms, matrices, polynomials, calculus, and the concept of probability. This
book is not intended as a guide to software implementors and has few programs.

The book’s web site, with an errata list, BibTEX information, and auxiliary material,
is part of the author’s web site, located at http://www.ecs.csun.edu/ dsalomon/.
Any errors found, comments, and suggestions should be directed to dsalomon@csun. edu.

Acknowlegments

I would like to thank Giovanni Motta and John Motil for their help and encourage-
ment. Giovanni also contributed to the text and pointed out numerous errors.

In addition, my editors at Springer Verlag, Wayne Wheeler and Catherine Brett,
deserve much praise. They went over the manuscript, made numerous suggestions and
improvements, and contributed much to the final appearance of the book.

Lakeside, California David Salomon
August 2007

To see a world in a grain of sand
And a heaven in a wild flower,

Hold infinity in the palm of your hand
And eternity in an hour.

—William Blake, Auguries of Innocence

(G

Contents

Preface

Part I: Basic Concepts

Introduction

1 Approaches to Compression

1.1 Variable-Length Codes 25
1.2 Run-Length Encoding 41

Intermezzo: Space-Filling Curves 46
1.3 Dictionary-Based Methods 47
14 Transforms 50
1.5 Quantization 51

Chapter Summary 58

2 Huffman Coding

2.1 Huffman Encoding 63
2.2 Huffman Decoding 67
2.3 Adaptive Huffman Coding 76

Intermezzo: History of Fax 83
2.4 Facsimile Compression 85

Chapter Summary 90

3 Dictionary Methods

3.1 LZ78 95

Intermezzo: The LZW Trio 98
3.2 LZW 98
3.3 Deflate: Zip and Gzip 108

Chapter Summary 119

vii

21

61

93

xii

Contents

Part II: Advanced Techniques

4

Arithmetic Coding

4.1 The Basic Idea 124
4.2 Implementation Details 130
4.3 Underflow 133
4.4 Final Remarks 134
Intermezzo: The Real Numbers 135
4.5 Adaptive Arithmetic Coding 137
4.6 Range Encoding 140
Chapter Summary 141
Image Compression
5.1 Introduction 144
5.2 Approaches to Image Compression 146
Intermezzo: History of Gray Codes 151
5.3 Image Transforms 152
5.4 Orthogonal Transforms 156
5.5 The Discrete Cosine Transform 160
Intermezzo: Statistical Distributions 178
5.6 JPEG 179
Intermezzo: Human Vision and Color 184
5.7 The Wavelet Transform 198
5.8 Filter Banks 216
5.9 WSQ, Fingerprint Compression 218
Chapter Summary 225
Audio Compression
6.1 Companding 230
6.2 The Human Auditory System 231
Intermezzo: Heinrich Georg Barkhausen 234
6.3 Linear Prediction 235
6.4 M-Law and A-Law Companding 238
6.5 Shorten 244
Chapter Summary 245
Other Methods
7.1 The Burrows—Wheeler Method 248
Intermezzo: Fibonacci Codes 253
7.2 Symbol Ranking 254
7.3 SCSU: Unicode Compression 258
Chapter Summary 263
Bibliography

Glossary

121
123

143

227

247

265
271

Contents xiii

Solutions to Puzzles 281
Answers to Exercises 283
Index 305

The content of most textbooks is perishable, but the
tools of self-directness serve one well over time.

—Albert Bandura

(G e

Part |:
Basic Concepts

Our everyday experience suggests that compression is an option that we naturally select
when faced with problems of high cost or restricted space. The following points illustrate
how such problems have been solved throughout history by resorting to (often intuitive)
compression:

s In ancient Greece, manuscripts were written on papyrus, which was then very ex-
pensive. As a result, writers tried to squeeze more text in a given space by eliminating
punctuations and interword spaces (Figure 1).

s In ancient Rome, people went around the high cost of tombstone engraving by
resorting to acronyms, the most common of which were S.T.L. (Sit Terra Levit, or let
the earth rest lightly upon her), D.M. (Dis Manibus, or to the ghosts of the underworld),
and B.M. (Bene Merenti, or to one deserving well).

Figure 1: Greek Papyrus and Ancient Coin.

2 Part I: Basic Concepts

m In the middle ages, praise for the current ruler was often stamped onto coins in the
form of acronyms, because of the tight space available (Figure 1).

= In a natural language, common words tend to be shorter than rarely-used words.
It is hard to imagine a language where the word for, say, yes would be as long as
encyclopedia or the word for establishment would be as short as me.

m We are familiar with the term “fine print.” This term is often used to hide unfriendly
clauses in a contract, or negative aspects of an item being advertised. Sometimes,
however, small print is simply used to save space, as is common in newspapers.

» The Arabic numerals that we use are based on weights assigned to positions in
the number. Thus, the digit 4 in 24,806 has a weight of 102 = 1000, so its value is
4,000. This numbering system has many advantages, not the least of which is that the
numbers are short. They are shorter than Roman numerals and much shorter than
stone-age numerals (see the discussion of stone-age binary in Section 1.1.1).

s The well-known Morse code (Section 1.1) assigns short codes to common letters,
such as E and T and long codes to rare letters, such as Z and Q. This is an early example
of intuitive text compression.

m The six-shutter telecommunication system, used by the British admiralty in the
19th century, could transmit 64 different symbols, more than enough for the letters and
digits. The extra symbols were assigned to common words. This system is described in
[Holzmann and Pehrson 95] and its application to compression is mentioned in [Bell et
al. 90].

m A similar system is the well-known Braille code for the blind. Developed by Louis
Braille in the 1820s, this code consists of groups (or cells) of 3 x 2 dots each, embossed
on thick paper. Each of the six dots in a group may be flat or raised, implying that the
information content of a group is equivalent to six bits, resulting in 64 possible groups.
Once appropriate codes are assigned to the letters, digits, and common punctuation
marks, several groups remain and may be used to code common words—such as and,
for, and of—and common strings of letters—such as ound, ation, and th.

m Scientists often claim that the chief aim of science is to explain as many known
facts as possible by deduction from as few assumptions (or axioms) as possible. This is
an example of economy of expression.

= Similarly, Occam’s razor (attributed to the 14th-century logician William of Ock-
ham) is a principle which states that the explanation of a phenomenon should make
as few assumptions as possible (entia non sunt multiplicanda praeter necessitatem, or
entities should not be multiplied beyond necessity).

—— —=mii— - —— —i—

The first part of this book consists of the first three chapters. They discuss the basic
approaches to data compression and describe a few popular techniques and methods
that are commonly used to compress data. Chapter 1 introduces the reader to the
important concepts of variable-length codes, prefix codes, statistical distributions, run-
length encoding, dictionary compression, transforms, and quantization. Chapter 2 is

Part I: Basic Concepts 3

devoted to the important Huffman algorithm and codes, and Chapter 3 describes some
of the many dictionary-based compression methods.

There are four basic food groups: milk chocolate, dark
chocolate, white chocolate, and chocolate truffles.

—Anonymous

Introduction

The modern discipline of data compression is concerned with reducing the size of digital
binary data. A data compression algorithm inputs a bitstream (a disk file or bits read
from a network) and outputs a shorter bitstream. Most of the physical objects surround-
ing us are difficult or impossible to shrink (or are damaged when forcibly compressed),
so shrinking the size of a data file may seem like magic (or perhaps like cheating). Thus,
before we try to explain how data is compressed, it is important to explain why it can
be compressed. The key to compressing data is the distinction between data and infor-
mation. Data is how information is represented; it is the physical embodiment of the
information. We know that it is possible to use different amounts of data to convey the
same information. A good example is a story. A novel that originally occupies 300 pages
can be “digested” and compressed to just 30 pages without losing the main outlines of
the plot. The same story may be told by one person in 2000 words and by another in 200
words because the former employs unnecessary (or irrelevant) words, thus introducing
redundancy into his narrative, while the latter selects only those words that are strictly
needed.

In simple terms, data can be compressed because its original representation is not
the shortest possible. We use different digital data structures to represent various types
of information in our computers, and we use these particular structures because they
make it easy to visualize the information and operate on it. Compression changes the
data representation to a shorter one (ideally, the shortest one), but it is difficult or even
impossible to visualize and process the information in such a representation.

In technical terms we say that the original representation of data has redundancies
and compressing the data reduces or eliminates these redundancies. Random data is
just that, random; it has no structure. Any nonrandom data is nonrandom because it
has structure in the form of regular patterns, and it is this structure that introduces
redundancies into the data. Data that has no redundancy to begin with cannot be
compressed. Thus, compression of data is not absolute. Given a data file, we cannot
tell whether it is small enough or too large. We have to look for redundancies (in
terms of structures or patterns) in the data and compress the data by eliminating them.
Compression should always be measured by comparing the size of the compressed data
with the size of the original data.

6 Introduction

The interpretation of compression as the removal of redundancy also explains why
it is impossible to compress data that has already been compressed. When data is
compressed, any redundancies in it, in the form of structures or patterns, is removed.
The compressed data features no structure and cannot be distinguished from random
data; in fact, it is random. Thus, any attempt to compress it again will fail. If it were
possible to compress data that is already compressed, then we could start with a data file
A, compress it to a smaller file B, compress B in turn to a smaller file C, and continue
in this way until a 1-byte (or even a 1-bit) file is reached. A 1-byte file cannot contain
all the data of file A (whose size is arbitrary), so recursive compression is impossible.

The following simple argument illustrates the essence of the statement “Data com-
pression is achieved by reducing or removing redundancy in the data.” The argument
shows that most data files cannot be compressed, no matter what compression method
is used. This seems strange at first because we compress our data files all the time.
The point is that most files cannot be compressed because they are random or close
to random and therefore have no redundancy. The (relatively) few files that can be
compressed are the ones that we want to compress; they are the files we use all the time.
They have redundancy, are nonrandom and are therefore useful and interesting.

Here is the argument. Given two different files A and B that are compressed to files
C and D, respectively, it is clear that C' and D must be different. If they were identical,
there would be no way to decompress them and get back file A or file B.

Suppose that a file of size n bits is given and we want to compress it efficiently.
Any compression method that can compress this file to, say, 10 bits would be welcome.
Even compressing it to 11 bits or 12 bits would be great. We therefore (somewhat
arbitrarily) assume that compressing such a file to half its size or better is considered
good compression. There are 2" n-bit files and they would have to be compressed into
2" different files of sizes less than or equal to n/2. However, the total number of these
files is

N =14+2444-- 4202 —l+n/2 _q o ol+n/2

so only N of the 2™ original files have a chance of being compressed efficiently. The
problem is that N is much smaller than 2". Here are two examples of the ratio between
these two numbers.

For n = 100 (files with just 100 bits), the total number of files is 21°° and the
number of files that can be compressed efficiently is 2°'. The ratio of these numbers is
the ridiculously small fraction 274 ~ 1.78 x 10715,

For n = 1000 (files with just 1000 bits, about 125 bytes), the total number of files
is 21090 and the number of files that can be compressed efficiently is 2°91. The ratio of
these numbers is the incredibly small fraction 2749 ~ 9.82x 10791,

Most files of interest are at least some thousands of bytes long. For such files,
the percentage of files that can be efficiently compressed is so small that it cannot be
computed with floating-point numbers even on a supercomputer (the result comes out
as zero).

The 50% figure used here is arbitrary, but even increasing it to 90% isn’t going to
make a significant difference. Here is why. Assuming that a file of n bits is given and
that 0.9n is an integer, the number of files of sizes up to 0.9n is

20 + 21 + . + 20.9’I’L — 21+0.97‘L _ 1 ~ 21+0497’L.

Introduction 7

For n = 100, there are 2'%° files and 2'79° = 2! can be compressed well. The ratio of
these numbers is 291 /2190 = 279 ~ 0.00195. For n = 1000, the corresponding fraction is
2901 /21000 — 9799 ~ 1.578 x 10730, These are still extremely small fractions.

It is therefore clear that no compression method can hope to compress all files or
even a significant percentage of them. In order to compress a data file, the compression
algorithm has to examine the data, find redundancies in it, and try to remove them.
The redundancies in data depend on the type of data (text, images, audio, etc.), which
is why a new compression method has to be developed for a specific type of data and
it performs best on this type. There is no such thing as a universal, efficient data
compression algorithm.

In spite of the arguments above, there are always those who claim to have developed
a “magic” compression method that can compress any data file to a small fraction of its
original size. Reference [incredible 07] lists quite a few such claims.

Multimedia digital data. The first computers were conceived as fast, reliable
computing machines, but it did not take computer users long to realize that the computer
can also process nonnumeric data. The various compilers for programming languages
are one such example, as are also databases, computer games, and computer networks.
However, it was not until the 1990s that many multimedia applications were developed
and came into popular use. The term “multimedia” refers to the ability to digitize,
store, and manipulate in the computer all kinds of data, not just numbers. Today
(2008), computer users commonly create, edit, store, view, and exchange text, still
images, video, and audio data easily and reliably.

Multimedia (noun, plural), the use of different media to convey information; text
together with audio, graphics and animation, often packaged on CD-ROM with links
to the Internet.

—wiktionary.com

Each type of data is represented differently in the computer and features different
structures and redundancies. This is why different approaches and techniques are needed
to compress it. Following is a discussion of the representations and redundancies of the
main data types.

Text is represented in the computer as individual characters, each encoded in bi-
nary. The codes are all the same length, because fixed-size codes are easy to store in
memory, move about, and operate on. For many years, the ASCII code, developed in
the 1960s, was the de facto standard. Each character of text was assigned a 7-bit code
(actually, a (7+1)-bit code, where the eighth bit serves as a parity, for added reliability).
Thus, there are 27 = 128 ASCII codes, for the letters, digits, some punctuation marks,
and various control functions. In the 1970s and 1980s, inexpensive, high-resolution
printers and display monitors came into being, where virtually any character can be
displayed and printed. These developments were the motivation for the Unicode project
which started in the early 1990s. Unicode assigns 16-bit codes to text symbols, and can
therefore represent 2'¢ = 65,536 symbols (there are provisions for even longer codes, so
the number of possible Unicode symbols is much greater).

The point is that certain letters appear in text more often than others, and the use
of fixed-size codes introduces structure (and thus redundancy) into text. It has been
known for a long time that the letters E, T, and A are common in English texts, while

8 Introduction

J, Z, and Q are rare. Thus, English text can be compressed by assigning variable-length
codes to the various letters such that common letters are assigned short codes and rare
letters are assigned long codes. Chapter 1 discusses a few variable-length codes and their
applications.

Note that text compression must be lossless. It is hard to come up with examples
where text data can lose a certain percentage of the text while being compressed, and
still be useful after decompression. However, the other types of data discussed here
can lose much data while being compressed, and be decompressed later without any
noticeable degradation in quality. This is why lossy compression, which often features
excellent performance, is so popular.

Images. A digital image is a rectangular array of dots called pixels. A pixel has
one attribute, its color, and this attribute is stored in the computer as a fixed-size code.
The use of fixed-size codes again introduces redundancy, because adjacent pixels tend
to have similar codes (we say that the pixels are correlated). An image where adjacent
pixels always have wildly different colors looks random, has no structure, features no
redundancy, and therefore cannot be compressed. Images that are of interest, however,
are far from random and exhibit structure in the form of pixel correlation. This type of
redundancy is termed interpixel redundancy.

Thus, an image can be compressed by, for example, subtracting the values of adja-
cent pixels. The pixels have similar colors, so their differences are small numbers, which
require fewer bits. More sophisticated approaches to image compression are discussed
in Chapter 5.

In addition to interpixel redundancy, images often have two more types of redun-
dancy, coding redundancy and psychovisual redundancy, which can be exploited for
compression.

Coding redundancy has to do with the distribution of colors in an image. Given a
digital image, it is easy to count the number of pixels that have color C. When this is
done for every color C', we normally find that a few colors dominate the image. We say
that the color distribution (or histogram) is nonuniform. This redundancy suggests a
way to compress the image. Replace each pixel with a variable-length code and assign
the short codes to the dominant colors.

Psychovisual redundancy has to do with the properties of the human eye. The eye
is very sensitive to light and can often detect just a few photons. However, the eye is not
a precision device and its sensitivity varies with the type of light that falls on it. It has
been known for many years that the eye is very sensitive to variations in the luminance
(brightness) of light but is much less sensitive to variations in the chrominance (color)
component of the light. Thus, an image can be compressed if the color of each pixel
is represented in terms of luminance and chrominance and the latter components are
heavily quantized.

Video data consists of a string of images, much as a movie consists of many im-
ages (called frames) on a strip of celluloid. There are two sources of redundancy in a
video, intraframe redundancy (the correlation of pixels in each frame) and interframe
redundancy (the fact that adjacent frames tend to be similar). The former redundancy
can be reduced by the same methods employed in image compression, while the latter
redundancy is dealt with by methods that compare a frame with its predecessor and
encode the differences between them.

Introduction 9

Audio data also features redundancy in the form of correlation between consecutive
audio samples, but first, a few words about audio and how it is digitized.

Sound is a wave. It can be viewed as a physical disturbance in the air (or some other
media) or as a pressure wave propagated by the movement of molecules. A microphone
is a device that senses sound and converts it to an electrical wave, i.e., a voltage that
varies continuously with time in the same way as the sound. To convert this voltage
into a format where it can be input into a computer, stored, edited, and played back,
the voltage is sampled many times each second. Each sample is a number whose value
is proportional to the voltage at the time of sampling. Figure Intro.1 shows a wave
sampled at three points and it is obvious that the first sample is a small number and
the third sample is a large number, close to the maximum.

Sampling ‘/\
points

Maximum amplitude

Amplitude

High frequency region Time

Figure Intro.1: Sound Wave and Three Samples.

Thus, audio sampling (or digitized sound) is a simple concept, but its success in
practice depends on one important factor, the sampling rate. How many times should a
sound wave be sampled each second? Sampling too often creates too many audio sam-
ples, while a very low sampling rate results in low-quality played-back sound. It seems
intuitively that the sampling rate should depend on the frequency, but the frequency
of a sound wave varies all the time, while the sampling rate should remain constant (a
variable sampling rate makes it difficult to edit and play back the digitized sound). The
solution was discovered back in the 1920s by H. Nyquist. It states that the optimum
sampling frequency should be slightly greater than twice the maximum frequency of the
sound. The sound wave of Figure Intro.1 has a region of high frequency at its center.
To obtain the optimum sampling rate for this particular wave, we should determine the
maximum frequency at this region, double it, and increase the result slightly.

Every sound wave has its own maximum frequency, but digitized sound used in
practice is based on the fact that the highest frequency that the human ear can perceive
is about 22,000 Hz. The optimum sampling rate that corresponds to this frequency is
44,100 Hz, and this rate is used when sound is digitized and recorded on a CD or DVD.

Now, back to audio compression. Digital audio is a string of audio samples, and
it can be compressed because adjacent audio samples tend to be similar; they are cor-
related, which introduces redundancy into the audio data. With 44,100 samples each
second, it is no wonder that adjacent samples are virtually always similar. Audio data
where many audio samples are very different from their neighbors would sound harsh
and dissonant.

10 Introduction

Thus, audio can be compressed by subtracting each audio sample from its pre-
decessor and replacing the differences (which tend to be small integers) by suitable
variable-length codes. Practical methods often “predict” the current sample by com-
puting a weighted sum of several previously-input samples, and then subtracting the
current sample from the prediction.

—— —— . —— ———

Entropy and Redundancy

Understanding data compression and its codes must start with an understanding
of information, because the former is based on the latter. This short section introduces
the relevant concepts from information theory.

Information theory is the creation, in the late 1940s, of Claude
Shannon. Shannon tried to develop means for measuring the
amount of information stored in a symbol without considering
the meaning of the information. He discovered the connection be-
tween the logarithm function and information, and showed that
the information content (in bits) of a symbol with probability p
is —log, p. If the base of the logarithm is e, then the information
is measured in units called nats. If the base is 3, the information
units are trits, and if the base is 10, the units are referred to as
Hartleys.

Information theory is concerned with the transmission of information from a sender
(termed a source), through a communications channel, to a receiver. The sender and
receiver can be persons or machines and the receiver may, in turn, act as intermediary
and send the information it has received to another receiver. The information is sent
in units called symbols (normally bits, but in verbal communications the symbols are
spoken words) and the set of all possible data symbols is an alphabet.

The most important single factor affecting communications is noise in the com-
munications channel. In verbal communications, this noise is, literally, noise. When
trying to talk in a noisy environment, we may lose part of the discussion. In electronic
communications, the channel noise is caused by imperfect hardware and by factors such
as sudden lightning, voltage fluctuations—old, high-resistance wires—sudden surge in
temperature, and interference from machines that generate strong electromagnetic fields.

The presence of noise implies that special codes should be used to increase the reli-
ability of transmitted information. This is referred to as channel coding or, in everyday
language, error-control codes.

The second most important factor affecting communications is sheer volume. Any
communications channel has a limited capacity. It can transmit only a limited number
of symbols per time unit. An obvious way to increase the amount of data transmitted is
to compress it before it is sent (in the source). Methods to compress data are therefore
known as source coding or, in everyday language, data compression. The feature that
makes it possible to compress data is the fact that individual symbols appear in our data
files with different probabilities. Thus, data can be compressed by assigning variable-
length codes to the individual data symbols such that short codes are assigned to the
common symbols.

Introduction 11

Two concepts from information theory, namely entropy and redundancy, are needed
in order to fully understand the principles behind the various methods for and approaches
to data compression.

Roughly speaking, the term “entropy” as defined by Shannon is a real number that
is proportional to the minimum number of yes/no questions needed to reach the answer
to some question. Another way of looking at entropy is as a quantity that describes how
much information is included in a signal or an event.

In order to understand the definition of entropy, we perform a thought experiment
where we measure the heights of 10,000 people. Suppose that we find that 1,500 people
have a height of h. We can say that the probability of having height h in our sample
of 10,000 people is 1,500/10,000 = 0.15. Statisticians perform such experiments and
they talk about random variables. A random variable X is an entity that can have
certain values x;, each with probability P;. In our experiment, the probability that our
random variable will have the value h is 0.15, and it can have other values with different
probabilities.

Given a discrete random variable X that can have n values x; with probabilities P;,
the entropy H(X) of X is defined as

H(X)=-) Plog,P;.
i=1

The surprising, unexpected part in this definition is the use of the logarithm. The
following paragraphs explain why the familiar logarithm function constitutes such an
important part of information theory and plays such an important role in measuring
information.

Imagine a source that emits symbols a; with probabilities p;. We assume that the
source is memoryless, i.e., the probability of a symbol being emitted does not depend on
what has been emitted in the past (the parallel in our thought experiment is that the
height of a person being measured does not depend on the height of the previous person
measured). We want to define a function I(a;) that will measure the amount of informa-
tion gained when we discover that the source has emitted symbol a;. Function I will also
measure our uncertainty as to whether the next symbol will be a;. Alternatively, I(a;)
corresponds to our surprise in finding that the next symbol is a;. Clearly, our surprise at
seeing a; emitted is inversely proportional to the probability p; (we are surprised when
a low-probability symbol is emitted, but not when we notice a high-probability symbol).
Thus, it makes sense to require that function I satisfies the following conditions:

1. I(a;) is a decreasing function of p;, and returns 0 when the probability of a symbol
is 1. This reflects our feeling that high-probability events convey less information.

2. I(asa;) = I(a;) + I(a;). This is a result of the source being memoryless and
the probabilities being independent. Discovering that a; was immediately followed by
aj, provided us with the same information as knowing that a; and a; were emitted
independently.

Even those with a minimal mathematical background may quickly realize that the
logarithm function satisfies the two conditions above. This is the first example of the
relation between the logarithm function and the quantitative measure of information.
The next few paragraphs illustrate other connections between the two.

12 Introduction

Consider the case of person A selecting at random an integer N between 1 and 64
and person B having to guess N. What is the minimum number of yes/no questions that
are needed for B to guess N? Those familiar with the technique of binary search know
the answer. Using this technique, B should divide the interval 1-64 in two, and should
start by asking “is N between 1 and 327”7 If the answer is no, then N is in the interval
33 to 64. This interval is then divided by two and B’s next question should be “is N
between 33 and 487”7 This process continues until the interval selected by B shrinks to
a single number.

It does not take much to see that exactly six questions are necessary to determine
N. This is because 6 is the number of times 64 can be divided in half. Mathematically,
this is equivalent to writing 26 = 64 or 6 = log, 64, which is why the logarithm is the
mathematical function that quantifies information.

What we call reality arises in the last analysis from the posing of yes/no questions. All
things physical are information-theoretic in origin, and this is a participatory universe.
—John Wheeler

Another approach to the same problem is to consider a nonnegative integer N and
ask how many digits does it take to express it. The answer, of course, depends on N. The
greater N, the more digits are needed. The first 100 nonnegative integers (0 through 99)
can be expressed by two decimal digits. The first 1,000 such integers can be expressed
by three digits. Again it does not take long to see the connection. The number of digits
required to represent N equals approximately log N. The base of the logarithm is the
same as the base of the digits. For decimal digits, use base 10; for binary digits (bits),
use base 2. If we agree that the number of digits it takes to express IV is proportional
to the information content of N, then again the logarithm is the function that gives
us a measure of the information. As an aside, the precise length, in bits, of the binary
representation of a positive integer n is 1+ |log, n |, or alternatively, [log,(n+1)]. When
n is represented in any other number base b, its length is given by the same formula,
but with the logarithm in base b instead of 2.

Here is another observation that illuminates the relation between the logarithm and
information. A 10-bit string can have 2!° = 1,024 values. We say that such a string
may contain one of 1,024 messages, or that the length of the string is the logarithm of
the number of possible messages the string can convey.

The following example sheds more light on the concept of entropy and will prepare us
for the definition of redundancy. Given a set of two symbols a; and as, with probabilities
P, and P», respectively, we compute the entropy of the set for various values of the
probabilities. Since Pi+P, = 1, the entropy of the set is — P logy Py —(1—P;) log,(1—Py)
and the results are summarized in Table Intro.2.

When P, = P;, at least one bit is required to encode each symbol, reflecting the
fact that the entropy is at its maximum, the redundancy is zero, and the data cannot be
compressed. However, when the probabilities are very different, the minimum number
of bits required per symbol drops significantly. We may not be able to conceive of a
compression method that expresses each symbol in just 0.08 bits, but we know that
when P; = 99%, such compression is theoretically possible.

In general, the entropy of a set of n symbols depends on the individual probabilities
P; of the symbols and is largest when all n probabilities are equal. Data representations

Introduction 13

Py P, Entropy

0.99 0.01 0.08
0.90 0.10 0.47
0.80 0.20 0.72
0.70 0.30 0.88
0.60 0.40 0.97
0.50 0.50 1.00

Table Intro.2: Probabilities and Entropies of Two Symbols.

often include redundancies and data can be compressed by reducing or eliminating these
redundancies. When the entropy is at its maximum, the data has maximum information
content and therefore cannot be further compressed. Thus, it makes sense to define
redundancy as a quantity that goes down to zero as the entropy reaches its maximum.

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point.
—Claude Shannon (1948)

To understand the definition of redundancy, we start with an alphabet of symbols
a;, where each symbol appears in the data with probability P;. The data is compressed
by replacing each symbol with an [;-bit-long code. The average code length is the sum
>~ Pil; and the entropy (the smallest number of bits required to represent the symbols)
is > [—Pilog, P;]. The redundancy R of the set of symbols is defined as the average
code length minus the entropy. Thus,

R=> Pil;— Y [~Plog, P].

i

The redundancy is zero when the average code length equals the entropy, i.e., when the
codes are the shortest and compression has reached its maximum.

Given a set of symbols (an alphabet), we can assign binary codes to the individual
symbols. It is easy to assign long codes to symbols, but most practical applications
require the shortest possible codes.

Consider the four symbols a;, as, as, and a4. If they appear in our data strings
with equal probabilities (= 0.25), then the entropy of the data is —4(0.25log, 0.25) = 2.
Two is the smallest number of bits needed, on average, to represent each symbol in this
case. We can simply assign our symbols the four 2-bit codes 00, 01, 10, and 11. Since
the probabilities are equal, the redundancy is zero and the data cannot be compressed
below two bits/symbol.

Next, consider the case where the four symbols occur with different probabilities as
shown in Table Intro.3, where a; appears in the data (on average) about half the time,
as and ag have equal probabilities, and a4 is rare. In this case, the data has entropy
—(0.491o0g, 0.49+0.251og, 0.25+0.25 log, 0.25+0.01 log, 0.01) ~ —(—0.050—0.5—0.5—
0.066) = 1.57. The smallest number of bits needed, on average, to represent each symbol
has dropped to 1.57.

If we again assign our symbols the four 2-bit codes 00, 01, 10, and 11, the redundancy
would be R = —1.57 + log, 4 = 0.43. This suggests assigning variable-length codes to

14 Introduction

Symbol Prob. Codel Code2

ay 0.49 1 1

as 0.25 01 01
as 0.25 010 000
a4 0.01 001 001

Table Intro.3: Variable-Length Codes.

the symbols. Codel of Table Intro.3 is designed such that the most common symbol,
a1, is assigned the shortest code. When long data strings are transmitted using Codel,
the average size (the number of bits per symbol) is 1 x 0.49 + 2 x 0.25 + 3 x 0.25 +
3 x 0.01 = 1.77, which is very close to the minimum. The redundancy in this case
is R = 1.77 — 1.57 = 0.2 bits per symbol. An interesting example is the 20-symbol
string ajasasaiaszazasaoa1a1a2a2a01a1a3a101a2a3a1, where the four symbols occur with
approximately the right frequencies. Encoding this string with Codel yields the 37 bits:
1/010|01]1]010|010/001]|01]1|1|01]|01|1|1]010|1|1|01]|010|1

(without the vertical bars). Using 37 bits to encode 20 symbols yields an average size of
1.85 bits/symbol, not far from the calculated average size. (The reader should bear in
mind that our examples are short. To obtain results close to the best that’s theoretically
possible, an input stream with at least thousands of symbols is needed.)

However, the conscientious reader may have noticed that Codel is bad because it
is not a prefix code. Code2, in contrast, is a prefix code and can be decoded uniquely.
Notice how Code2 was constructed. Once the single bit 1 was assigned as the code of a,
no other codes could start with 1 (they all had to start with 0). Once 01 was assigned
as the code of as, no other codes could start with 01. This is why the codes of a3 and
a4 had to start with 00. Naturally, they became 000 and 001.

— ——— —— . —— ——

Several important data compression terms are introduced next.

L] The compressor or encoder is the program that compresses raw data and generates
compressed (low-redundancy) output. The decompressor or decoder converts in the
opposite direction. Note that the term encoding is very general and has several meanings,
but since this book discusses only data compression, it employs the term encoder for
compressor. The term codec is used to describe both the encoder and the decoder.
Similarly, the term companding is short for “compressing/expanding.”

m For the original, uncompressed data, we use the terms unencoded, raw, or original
data. The compressed data is also termed encoded. The term bitstream is often used in
the literature to indicate the compressed data.

s A nonadaptive compression method is inflexible and does not modify its operations,
its parameters, or its tables in response to the particular data being compressed. In
contrast, an adaptive method examines the raw data and modifies its operations and/or
its parameters accordingly. Some compression methods use a 2-pass algorithm, where
the first pass reads the input to collect statistics on the data to be compressed, and the

Introduction 15

second pass does the actual compression using parameters or codes set by the first pass.
Such a method may be called semiadaptive. A data compression method can also be
locally adaptive, meaning it adapts itself to local conditions in the input and varies this
adaptation as it moves from region to region in the input.

m Lossy/lossless compression: Certain compression methods are lossy. They achieve
better compression by losing some information. When the compressed data is later
decompressed, the result is different from the original. Such a method makes sense
especially in image, video, or audio compression. If the loss of data is small, the eye or
ear may not perceive any difference. In contrast, text files, especially files containing
computer programs, often become meaningless or worthless if even one bit is modified.
Such files should be compressed only by a lossless compression method.

m Perceptive compression: A lossy encoder must take advantage of the special type
of data that is being compressed. It should delete only data whose absence would not
be detected by our senses. Such an encoder must therefore employ algorithms based
on our understanding of psychoacoustic and psychovisual perception, which is why it is
sometimes referred to as a perceptive encoder. Such an encoder can be made to operate
at a constant compression ratio, where for each x bits of raw data, it outputs y bits
of compressed data. This is convenient in cases where the compressed data has to be
transmitted at a constant rate. The trade-off is a variable subjective quality. Parts of
the original data that are difficult to compress may, after decompression, look (or sound)
bad. Such parts may require more than y bits of output for = bits of input.

n Symmetric compression is the case where the decompressor is the reverse of the
compressor. Such a method makes sense for general work, where the same number of
files is compressed as is decompressed. In an asymmetric compression method, either the
compressor or the decompressor may have to work significantly harder. Such methods
have their uses and are not necessarily bad. A compression method where the com-
pressor executes a slow, complex algorithm and the decompressor is simple is a natural
choice when files are compressed into an archive (a CDs and DVDs are good examples)
where they will be decompressed and used very often. The opposite case is useful in
environments where files are updated all the time and backups are made. There is only
a small chance that a backup file will be used, so the decompressor is rarely used and
can be slow.

When you look
into a mirror

it is not
yourself you see
but a kind

of apish error
posed in fearful
symmetry

kool uoy nehW
rorrim a otni
ton si ti

ees uoy flesruoy
dnik a tub
rorre hsipa fo
lufraef ni desop
yrtemmys

John Updike, “Mirror,” in Telephone
Poles and Other Poems (1963)

16 Introduction

Exercise Intro.1: Give an example of a compressed file where efficient compression is
important but the speed of both compressor and decompressor isn’t important.

s Many modern compression methods are asymmetric. Often, the formal specifica-
tion of such a method consists of a description of the decoder and the format of the
compressed data, but does not discuss the operation of the encoder. Any encoder that
generates a correct compressed file is considered compliant, as is also any decoder that
can read and decode such a file. The advantage of such a description is that anyone
is free to develop and implement new, sophisticated algorithms for the encoder. The
implementor need not even publish the details of the encoder and may consider it pro-
prietary. If a compliant encoder is demonstrably better than competing encoders, it may
become a commercial success. In such a scheme, the encoder is considered algorithmic,
while the decoder, which is normally much simpler, is termed deterministic.

» A data compression method is called universal if the compressor and decompressor
do not know the statistics of the input data and do not use it explicitly. A universal
method is optimal if the compressor can produce compression factors that asymptotically
approach the entropy of the input stream for long inputs.

» The term file differencing refers to any method that locates and compresses the
differences between two files. Imagine a file A with two copies that are kept by two
users. When a copy is updated by one user, it should be sent to the other user, to keep
the two copies identical. Instead of sending a copy of A, which may be big, a much
smaller file containing just the differences, in compressed format, can be sent and used
at the receiving end to update the copy of A.

= Most compression methods operate in the streaming mode, where the codec inputs a
byte or several bytes, processes them, and continues until an end-of-file is sensed. Some
methods, such as Burrows-Wheeler (Section 7.1), work in the block mode, where the
input is read block by block and each block is encoded separately. The block size in
this case should be a user-controlled parameter, because its size may greatly affect the
performance of the method.

" Compression performance: Several measures are commonly used to indicate the
performance of a compression method.

1. The compression ratio is defined as

size of the output stream

Compression ratio = — . .
size of the input stream

A value of 0.6 means that the data occupies 60% of its original size after compression.
Values greater than 1 imply expansion (negative compression). The compression ratio
can also be called bpb (bit per bit), since it equals the number of bits in the com-
pressed data that are needed, on average, to compress one bit in the input data. In
modern, efficient text compression methods, it makes sense to talk about bpc (bits per
character)—the number of bits it takes, on average, to compress one character in the
input.

The term bitrate is a general name for bpb and bpc. Thus, the main goal of data
compression is to represent any given data at low bitrates.

Introduction 17

2. The inverse of the compression ratio is the compression factor:

size of the input stream

Compression factor = — .
size of the output stream

In this case, values greater than 1 indicate compression and values less than 1 imply
expansion. This measure seems natural to many people, since the bigger the factor, the
better the compression.

3. The expression 100 x (1 — compression ratio) is also a reasonable measure of com-
pression performance. A value of 60 means that the output occupies 40% of its original
size (or that the compression has resulted in savings of 60%).

4. In image compression, the quantity bpp (bits per pixel) is commonly used. It equals
the number of bits needed, on average, to compress one pixel of the image. This quantity
should always be compared with the bpp before compression.

5. The compression gain is defined as

100 log reference size

¢ compressed size’

where the reference size is either the size of the input or the size of the compressed
data produced by some standard lossless compression method. For small numbers x,
it is true that log.(1 + x) & x, so a small change in a small compression gain is very
similar to the same change in the compression ratio. Because of the use of the logarithm,
two compression gains can be compared simply by subtracting them. The unit of the
compression gain is called percent log ratio and is denoted by §.

6. The speed of compression can be measured in cycles per byte (CPB). This is the aver-
age number of machine cycles it takes to compress one byte. This measure is important
when compression is done by special hardware.

7. Other quantities, such as mean square error (MSE) and peak signal-to-noise ratio
(PSNR), are used to measure the distortion caused by lossy compression of still images
and video.

m The probability model. This concept is important in statistical data compression
methods. In such a method, a model for the data has to be constructed before com-
pression can begin. A typical model may be built by reading the entire input stream,
counting the number of times each symbol appears (its frequency of occurrence), and
computing the probability of occurrence of each symbol. The data is then input again,
symbol by symbol, and is compressed using the information in the probability model.

Reading the entire input twice is slow, which is why practical compression methods
use estimates, or adapt themselves to the data as it is being input and compressed. It
is easy to scan large quantities of, say, English text and compute the frequencies and
probabilities of every character. This information can later serve as an approximate
model for English text and can be used by text compression methods to compress any
English text. It is also possible to start by assigning equal probabilities to all the symbols
in an alphabet, then reading symbols and compressing them, and, while doing that, also
counting frequencies and changing the model as compression progresses. This is the
principle behind adaptive compression methods.

18 Introduction

. The term “baud” is used in this book to mean bits per second, but see a more
general definition in http://en.wikipedia.org/wiki/Baud.

Data Compression Resources

A vast number of resources on data compression is available. Any Internet search
under “data compression,” “lossless data compression,” “image compression,” “audio
compression,” and similar topics returns at least tens of thousands of results. The
following URLs have useful links and pointers to the many data compression resources

available on the Internet and elsewhere:

http://www.hn.is.uec.ac.jp/ arimura/compression_links.html
http://cise.edu.mie-u.ac.jp/ okumura/compression.html
http://compression.ca/ (mostly comparisons), and http://datacompression.info/

The latter URL has a wealth of information on data compression, including tutori-
als, links to workers in the field, and lists of books. The site was maintained by Mark
Nelson but it currently belongs to Visicron Corp.

Traditional (hardcopy) resources range from general texts and texts on specific
aspects or particular methods, to survey articles in magazines, to technical reports and
research papers in scientific journals. Following is a short list of (mostly general) books,
sorted by date of publication.

James Storer, Proceedings of the IEEE Data Compression Conference, IEEE Press,
published annually since 1991.

Tinku Acharya and Ping-Sing Tsai, JPEG2000 Standard for Image Compression:
Concepts, Algorithms and VLSI Architectures, John Wiley and Sons (2005).

Ida Mengyi Pu, Fundamental Data Compression, Butterworth-Heinemann (2005).

Khalid Sayood, Introduction to Data Compression, Morgan Kaufmann, 3rd edition
(2005).

Darrel Hankerson, Introduction to Information Theory and Data Compression, Chap-
man & Hall (CRC), 2nd edition (2003).

Peter Symes, Digital Video Compression, McGraw-Hill/TAB Electronics (2003).

Charles Poynton, Digital Video and HDTYV Algorithms and Interfaces, Morgan
Kaufmann (2003).

lain E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for
Next Generation Multimedia, John Wiley and Sons (2003).

Marina Bosi and Richard E. Goldberg, Introduction to Digital Audio Coding and
Standards, Springer Verlag (2003).

Khalid Sayood, Lossless Compression Handbook, Academic Press (2002).

Touradj Ebrahimi and Fernando Pereira, The MPEG-4 Book, Prentice Hall (2002).

Adam Drozdek, Elements of Data Compression, Course Technology (2001).

Alistair Moffat and Andrew Turpin, Compression and Coding Algorithms, Springer
Verlag (2002).

David Taubman and Michael Marcellin (Editors), JPEG2000: Image Compression
Fundamentals, Standards and Practice, Springer Verlag (2001).

Kamisetty R. Rao, The Transform and Data Compression Handbook, CRC (2000).

Tan H. Witten, Alistair Moffat, and Timothy C. Bell, Managing Gigabytes: Com-
pressing and Indexing Documents and Images, Morgan Kaufmann, 2nd edition (1999).

Introduction 19

Peter Wayner, Compression Algorithms for Real Programmers, Morgan Kaufmann
(1999).

John Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP,
ACM Press and Addison-Wesley Professional (1999).

Jerry D. Gibson et al. Digital Compression for Multimedia: Principles € Standards,
Morgan Kaufmann (1998).

Nikil Jayant, Signal Compression: Coding of Speech, Audio, Text, Image and Video,
World Scientific (1997).

Weidong Kou, Digital Image Compression: Algorithms and Standards, Kluwer
(1995).

Mark Nelson and Jean-Loup Gailly, The Data Compression Book, M&T Books, 2nd
edition (1995).

Rafail Krichevsky, Universal Compression and Retrieval, Kluwer Academic Pub-
lishers, 1994.

William B. Pennebaker and Joan L. Mitchell, JPEG: Still Image Data Compression
Standard, Springer Verlag (1992).

Timothy C. Bell, John G. Cleary, and Ian H. Witten, Text Compression, Prentice
Hall (1990).

James A. Storer, Data Compression: Methods and Theory, Computer Science Press
(1988).

John Woods, ed., Subband Coding, Kluwer Academic Press (1990).

— — - E——— —a—

The symbol “)” is used to indicate a blank space in places where spaces may lead
to ambiguity.

Comments, suggestions, and corrections are always welcome and should be directed
to dsalomon@csun.edu.

History is a kind of introduction to more interesting
people than we can possibly meet in our restricted
lives; let us not neglect the opportunity.

—Dexter Perkins

(G e

1

Approaches
to Compression

EX 19 Prelude AW

How can a given a data file be compressed? Compression amounts to eliminating the
redundancy in the data, so the first step is to find the source of redundancy in each type
of data. Once we understand what causes redundancy in a given type of data, we can
propose an approach to eliminating the redundancy.

This chapter covers the basic approaches to the compression of different types of
data. The chapter discusses the principles of variable-length codes, run-length encoding,
dictionary-based compression, transforms, and quantization. Later chapters illustrate
how these approaches are applied in practice.

Variable-length codes. Text is perhaps the simplest example of data with redun-
dancies. A text file consists of individual symbols (characters), each encoded in ASCII or
Unicode. These representations are redundant because they employ fixed-length codes,
while characters of text appear with different frequencies. Analyzing large quantities of
text indicates that certain characters tend to appear in texts more than other characters.
In English, for example, the most common letters are E, T, and A, while J, Q, and Z are
the rarest. Thus, redundancy can be reduced by the use of variable-length codes, where
short codes are assigned to the common symbols and long codes are assigned to the
rare symbols. Designing such a set of codes must take into consideration the following
points:

m We have to know the probability (or, equivalently, the frequency of occurrence)
of each data symbol. The variable-length codes should be selected according to these

22 1. Approaches to Compression

probabilities. For example, if a few data symbols are very common (i.e., appear with
large probabilities) while the rest are rare, then we should ideally have a set of variable-
length codes where a few codes are very short and the rest are long.

m Once the original data symbols are replaced with variable-length codes, the result
(the compressed file) is a long string of bits with no separators between the codes of
consecutive symbols. The decoder (decompressor) should be able to read this string and
break it up unambiguously into individual codes. We say that such codes have to be
uniquely decodable or uniquely decipherable (UD).

Run-length encoding. A digital image is a rectangular array of dots called pix-
els. There are two sources of redundancy in an image, namely dominant colors and
correlation between pixels.

m A pixel has a single attribute, its color. A pixel is stored in memory or on a file as
a color code. A pixel in a monochromatic image (black and white or bi-level) can be
either black or white, so a 1-bit code is sufficient to represent it. A pixel in a grayscale
image can be a certain shade of gray, so its code should be an integer. Similarly, the
code of a pixel in a color image must have three parts, describing the intensities of its
three color components. Imagine an image where each pixel is described by a 24-bit
code (eight bits for each of the three color components). The total number of colors in
such an image can be 2?4 ~ 16.78 million, but any particular image may have only a
few hundred or a few thousand colors. Thus, one approach to image compression is to
replace the original pixel codes with variable-length codes.

» We know from long experience that the individual pixels of an image tend to be
correlated. A pixel will often be identical, or very similar, to its near neighbors. This
can easily be verified by looking around. Imagine an outdoor scene with rocks, trees, the
sky, the sun, and clouds. As our eye moves across the sky, we see mostly blue. Adjacent
points may feature slightly different shades of blue; they are not identical but neither
are they completely independent. We say that their colors are correlated. The same is
true when we look at points in a cloud. Most points will have a shade of white similar
to their near neighbors. At the intersection of a sky and a cloud, some blue points
will have immediate white neighbors, but such points constitute a small minority. Pixel
correlation is the main source of redundancy in images and most image compression
methods exploit this feature to obtain efficient compression.

In a bi-level image, pixels can be only black or white. Thus, a pixel can either be
identical to its neighbors or different from them, but not similar. Pixel correlation implies
that in such an image, a pixel will tend to be identical to its near neighbors. This suggests
another approach to image compression. Given a bi-level image to be compressed, scan
it row by row and count the lengths of runs of identical pixels. If a row in such an image
starts with 12 white pixels, followed by five black pixels, followed by 36 white pixels,
followed by six black pixels, and so on, then only the numbers 12, 5, 36, 6,...need to
be output. This is the principle of run-length encoding (RLE), a popular method that
is sometimes combined with other techniques to improve compression performance.

Exercise 1.1: It seems that in addition to the sequence of run lengths, a practical RLE
compression method has to save the color (white or black) of the first pixel of a row, or
at least the first pixel of the image. Explain why this is not necessary.

Prelude 23

Dictionaries. Returning to text data, we observe that it has another source of
redundancy. Given a nonrandom text, we often find that bits and pieces of it—such as
words, syllables, and phrases—tend to appear many times, while other pieces are rare
or nonexistent. A grammar book, for example, may contain many occurrences of the
words noun, pronoun, verb, and adverb in one chapter and many occurrences of con-
jugation, conjunction, subject, and subjunction in another chapter. The principle
of dictionary-based compression is to read the next data item D to be compressed, and
search the dictionary for D. If D is found in the dictionary, it is compressed by emitting a
pointer that points to it in the dictionary. If the pointer is shorter than D, compression
is achieved.

The dictionaries we commonly use consist of lists of words, each with its definition.
A dictionary used to compress data is different. It is a list of bits and pieces of data that
have already been read from the input. When a data item is input for the first time, it
is not found in the dictionary and therefore cannot be compressed. It is written on the
output in its original (raw) format, and is also added to the dictionary. When this piece
is read again from the data, it is found in the dictionary, and a pointer to it is written
on the output.

Many dictionary methods have been developed and implemented. Their details
are different, but the principle is the same. Chapter 3 and Section 1.3 describe a few
important examples of such methods.

Prediction. The fact that adjacent pixels in an image tend to be correlated implies
that the difference between a pixel and any of its near neighbors tends to be a small
integer (notice that it can also be negative). The term “prediction” is used in the
technical literature to express this useful fact. Some pixels may turn out to be very
different from their neighbors, which is why sophisticated prediction compares a pixel
to an average (sometimes a weighted average) of several of its nearest neighbors. Once a
pixel is predicted, the prediction is subtracted from the pixel to yield a difference. If the
pixels are correlated and the prediction is done properly, the differences tend to be small
(signed) integers. They are easy to compress by replacing them with variable-length
codes. Vast experience with many digital images suggests that the differences tend to be
distributed according to the Laplace distribution, a well-known statistical distribution,
and this fact helps in selecting the best variable-length codes for the differences.

The technique of prediction is also employed by several audio compression algo-
rithms, because audio samples also tend to be strongly correlated.

Transforms. Sometimes, a mathematical problem can be solved by transforming
its constituents (unknowns, coefficients, numbers, vectors, or anything else) to a different
format, where they may look familiar or have a simple form and thus make it possible
to solve the problem. After the problem is solved in this way, the solution has to be
transformed back to the original format. Roman numerals provide a convincing example.
The ancient Romans presumably knew how to operate on these numbers, but when we
are faced with a problem such as XCVI x XII, we may find it natural to transform the
original numbers into modern (Arabic) notation, multiply them, and then transform the
result back into a Roman numeral. Here is the result:

XCVI x XII— 96 x 12 = 1152 — MCLII.

Another example is the integer 65,536. In its original, decimal representation, this
number doesn’t seem special or interesting, but when transformed to binary it becomes

24 1. Approaches to Compression

the round number 10,000,000,000,000,000, = 26,

Two types of transforms, orthogonal and subband, are employed by various com-
pression methods. They are described in some detail in Chapter 5. These transforms
do not by themselves compress the data and are used only as intermediate steps, trans-
forming the original data to a format where it is easy to compress. Given a list of IV
correlated numbers, such as adjacent pixels in an image or adjacent audio samples, an
orthogonal transform converts them to N transform coefficients, of which the first is
large and dominant (it contains much of the information of the original data) and the
remaining ones are small and contain the details (i.e., the less important features) of
the original data. Compression is achieved in a subsequent step, either by replacing
the detail coefficients by variable-length codes or by quantization, RLE, or arithmetic
coding. A subband transform (also known as a wavelet transform) also results in coarse
and fine transform coefficients, and when applied to an image, it separates the ver-
tical, horizontal, and diagonal constituents of the image, so each can be compressed
differently.

Quantization. Text must be compressed without any loss of information, but
images, video, and audio can tolerate much loss of data when compressed and later
decompressed. The loss, addition, or corruption of one character of text can cause
confusion, misunderstanding, or disagreements. Changing not to now, want to went
or under the edge to under the hedge may result in a sentence that is syntactically
correct but has a different meaning.

Exercise 1.2: Change one letter in each of the following phrases to create a syntactically
valid phrase with a completely different meaning, “look what the cat dragged in,” “my
ears are burning,” “bad egg,” “a real looker,” “my brother’s keeper,” and “put all your

eggs in one basket”.

Quantization is a simple approach to lossy compression. The idea is to start with a
finite list of IV symbols .S; and to modify each of the original data symbols to the nearest
S;. For example, if the original data consists of real numbers in a certain interval, then
each can be rounded off to the nearest integer. It takes fewer bits to express the integer,
so compression is achieved, but it is lossy because it is impossible to retrieve the original
real data from the integers. The well-known mp3 audio compression method is based on
quantization of the original audio samples.

The beauty of code is much more akin to the elegance, efficiency and clean lines of
a spiderweb. It is not the chaotic glory of a waterfall, or the pristine simplicity of a
flower. It is an aesthetic of structure, design and order.

—Charles Gordon

1.1 Variable-Length Codes 25

1.1 Variable-Length Codes

Often, a file of data to be compressed consists of data symbols drawn from an alphabet.
At the time of writing (mid-2007) most text files consist of individual ASCII characters.
The alphabet in this case is the set of 128 ASCII characters. A grayscale image consists
of pixels, each coded as one number indicating a shade of gray. If the image is restricted
to 256 shades of gray, then each pixel is represented by eight bits and the alphabet is the
set of 256 byte values. Given a data file where the symbols are drawn from an alphabet,
it can be compressed by replacing each symbol with a variable-length codeword. The
obvious guiding principle is to assign short codewords to the common symbols and long
codewords to the rare symbols.

In data compression, the term code is often used for the entire set, while the indi-
vidual codes are referred to as codewords.

Variable-length codes (VLCs for short) are used in several real-life applications, not
just in data compression. The following is a short list of applications where such codes
play important roles.

» The Morse code for telegraphy, originated in the 1830s by Samuel Morse and Alfred
Vail, employs the same idea. It assigns short codes to commonly-occurring letters (the
code of E is a dot and the code of T is a dash) and long codes to rare letters and
punctuation marks (--.- to Q, -=.. to Z, and --..-- to the comma).

m Processor design. Part of the architecture of any computer is an instruction set
and a processor that fetches instructions from memory and executes them. It is easy
to handle fixed-length instructions, but modern computers normally have instructions
of different sizes. It is possible to reduce the overall size of programs by designing the
instruction set such that commonly-used instructions are short. This also reduces the
processor’s power consumption and physical size and is especially important in embedded
processors, such as processors designed for digital signal processing (DSP).

s Country calling codes. ITU-T recommendation E.164 is an international standard
that assigns variable-length calling codes to many countries such that countries with
many telephones are assigned short codes and countries with fewer telephones are as-
signed long codes. These codes also obey the prefix property (page 28) which means
that once a calling code C has been assigned, no other calling code will start with C'.

s The International Standard Book Number (ISBN) is a unique number assigned to a
book, to simplify inventory tracking by publishers and bookstores. The ISBN numbers
are assigned according to an international standard known as ISO 2108 (1970). One
component of an ISBN is a country code, that can be between one and five digits long.
This code also obeys the prefix property. Once C' has been assigned as a country code,
no other country code will start with C.

= VCR Plus+ (also known as G-Code, VideoPlus+, and ShowView) is a prefix,
variable-length code for programming video recorders. A unique number, a VCR Plus+,
is computed for each television program by a proprietary algorithm from the date, time,
and channel of the program. The number is published in television listings in newspa-
pers and on the Internet. To record a program on a VCR, the number is located in a
newspaper and is typed into the video recorder. This programs the recorder to record

26 1. Approaches to Compression

the correct channel at the right time. This system was developed by Gemstar-TV Guide
International [Gemstar 07].

When we consider using VL.Cs to compress a data file, the first step is to determine
which data symbols in this file are common and which ones are rare. More precisely,
we need to know the frequency of occurrence (or alternatively, the probability) of each
symbol of the alphabet. If, for example, we determine that symbol e appears 205 times
in a 1106-symbol data file, then the probability of e is 205/1106 =~ 0.185 or about 19%.
If this is higher than the probabilities of most other alphabet symbols, then e is assigned
a short codeword. The list of probabilities (or frequencies of occurrence) is called the
statistical distribution of the data symbols. Figure 1.1 displays the distribution of the
256 byte values in a past edition of the book Data Compression: The Complete Reference
as a histogram. It is easy to see that the most-common symbol is the space, followed by
a cr (carriage return at the end of lines) and the lower-case e.

0.20 | &

(]

H

[

2

e

<

©

ost
0.15
0.10
0.05 space

or uppercaseletters] lett
and digits owercaseletters
B Byte value

0.00

0 50 100 150 200 250

Figure 1.1: A Histogram of Letter Distribution.

The problem of determining the distribution of data symbols in a given file is per-
haps the chief consideration in determining the assignment of variable-length codewords
to symbols and thus the performance of the compression algorithm. We discuss three
approaches to this problem as follows:

m A two-pass compression job. The compressor (encoder) reads the entire data file
and counts the number of times each symbol appears. At the end of this pass, the

1.1 Variable-Length Codes 27

probabilities of the symbols are computed and are used to determine the set of variable-
length codes that will be assigned to the symbols. This set is written on the compressed
file and the encoder starts the second pass. In this pass it again reads the entire input
file and compresses it by replacing each symbol with its codeword. This method provides
very good results because it uses the correct probabilities for each data file. The table
of codewords must be included in the output file, but this table is small (typically a few
hundred codewords written on the output consecutively, with no separators between
codes). The downside of this approach is its low speed. Currently, even the fastest
magnetic disks are considerably slower than memory and CPU operations, which is why
reading the input file twice normally results in unacceptably-slow execution. Notice that
the decoder is simple and fast because it does not need two passes. It starts by reading
the code table from the compressed file, following which it reads variable-length codes
and replaces each with its original symbol.

m Use a set of training documents. The first step in implementing fast software for
text compression may be to select texts that are judged “typical“ and employ them to
“train” the algorithm. Training consists of counting symbol frequencies in the training
documents, computing the distribution of symbols, and assigning them variable-length
codes. The code table is then built into both encoder and decoder and is later used to
compress and decompress various texts. An important example of the use of training
documents is facsimile compression (page 86). The success of such software depends on
how “typical” the training documents are.

It is unlikely that a set of documents will be typical for all kinds of text, but such a
set can perhaps be found for certain types of texts. A case in point is facsimile compres-
sion. Documents sent on telephone lines between fax machines have to be compressed in
order to cut the transmission times from 10-11 minutes per page to about one minute.
The compression method must be an international standard because fax machines are
made by many manufacturers, and such a standard has been developed (Section 2.4). It
is based on a set of eight training documents that have been selected by the developers
and include a typed business letter, a circuit diagram, a French technical article with
figures and equations, a dense document in Kanji, and a handwritten memo.

Another application of training documents is found in image compression. Re-
searchers trying to develop methods for image compression have long noticed that pixel
differences in images tend to be distributed according to the well-known Laplace distri-
bution (by a pixel difference is meant the difference between a pixel and an average of
its nearest neighbors).

= An adaptive algorithm. Such an algorithm does not assume anything about the
distribution of the symbols in the data file to be compressed. It starts “with a blank
slate” and adapts itself to the statistics of the input file as it reads and compresses
more and more symbols. The data symbols are replaced by variable-length codewords,
but these codewords are modified all the time as more is known about the input data.
The algorithm has to be designed such that the decoder would be able to modify the
codewords in precisely the same way as the encoder. We say that the decoder has to
work in lockstep with the encoder. The best known example of such a method is the
adaptive (or dynamic) Huffman algorithm (Section 2.3).

28 1. Approaches to Compression

Exercise 1.3: Compare the three different approaches (two-passes, training, and adap-
tive compression algorithms) and list some of the pros and cons for each.

Several variable-length codes are listed and described later in this section, and the
discussion shows how the average code length can be used to determine the statistical
distribution to which the code is best suited.

The second consideration in the design of a variable-length code is unique decod-
ability (UD). We start with a simple example: the code a; = 0, as = 10, ag = 101,
and a4 = 111. Encoding the string ajasay ... with these codewords results in the bit-
string 0101111. ... However, decoding is ambiguous. The same bitstring 0101111...can
be decoded either as ajazay ... or ajasay This code is not uniquely decodable. In
contrast, the similar code a; = 0, as = 10, a3 = 110, and a4 = 111 (where only the
codeword of ag is different) is UD. The string ajasay . . . is easily encoded to 0110111. . .,
and this bitstring can be decoded unambiguously. The first 0 implies a1, because only
the codeword of a; starts with 0. The next (second) bit, 1, can be the start of as, as,
or as. The next (third) bit is also 1, which reduces the choice to a3 or a4. The fourth
bit is 0, so the decoder emits as.

A little thinking clarifies the difference between the two codes. The first code is
ambiguous because 10, the code of ag, is also the prefix of the code of as. When the
decoder reads 10. .., it often cannot tell whether this is the codeword of as or the start
of the codeword of a3. The second code is UD because the codeword of as is not the
prefix of any other codeword. In fact, none of the codewords of this code is the prefix
of any other codeword.

This observation suggests the following rule. To construct a UD code, the codewords
should satisfy the following prefix property. Once a codeword c is assigned to a symbol,
no other codeword should start with the bit pattern c¢. Prefix codes are also referred to
as prefix-free codes, prefix condition codes, or instantaneous codes. Observe, however,
that a UD code does not have to be a prefix code. It is possible, for example, to designate
the string 111 as a separator (a comma) to separate individual codewords of different
lengths, provided that no codeword contains the string 111. There are other ways to
construct a set of non-prefix, variable-length codes.

A UD code is said to be instantaneous if it is possible to decode each codeword in
a compressed file without knowing the succeeding codewords. Prefix codes are instan-
taneous.

Constructing a UD code for given finite set of data symbols should start with the
probabilities of the symbols. If the probabilities are known (at least approximately),
then the best variable-length code for the symbols is obtained by the Huffman algo-
rithm (Chapter 2). There are, however, applications where the set of data symbols is
unbounded; its size is either extremely large or is not known in advance. Here are a few
practical examples of both cases:

m Text. There are 128 ASCII codes, so the size of this set of symbols is reasonably
small. In contrast, the number of Unicodes is in the tens of thousands, which makes it
impractical to use variable-length codes to compress text in Unicode; a different approach
is required.

m A grayscale image. For 8-bit pixels, the number of shades of gray is 256, so a set of
256 codewords is required, large, but not too large.

1.1 Variable-Length Codes 29

m Pixel prediction. If a pixel is represented by 16 or 24 bits, it is impractical to
compute probabilities and prepare a huge set of codewords. A better approach is to
predict a pixel from several of its near neighbors, subtract the prediction from the
pixel value, and encode the resulting difference. If the prediction is done properly,
most differences will be small (signed) integers, but some differences may be (positive or
negative) large, and a few may be as large as the pixel value itself (typically 16 or 24 bits).
In such a case, a code for the integers is the best choice. Each integer has a codeword
assigned that can be computed on the fly. The codewords for the small integers should
be small, but the lengths should depend on the distribution of the difference values.

» Audio compression. Audio samples are almost always correlated, which is why many
audio compression methods predict an audio sample from its predecessors and encode
the difference with a variable-length code for the integers.

Any variable-length code for integers should satisfy the following requirements:

1. Given an integer n, its code should be as short as possible and should be con-
structed from the magnitude, length, and bit pattern of n, without the need for any
table lookups or other mappings.

2. Given a bitstream of variable-length codes, it should be easy to decode the next
code and obtain an integer n even if n hasn’t been seen before.

Quite a few VLCs for integers are known. Many of them include part of the binary
representation of the integer, while the rest of the codeword consists of side information
indicating the length or precision of the encoded integer.

The following sections describe popular variable-length codes (the Intermezzo on
page 253 describes one more), but first, a few words about notation. It is customary to
denote the standard binary representation of the integer n by (n). This representation
can be considered a code (the beta code), but this code does not satisfy the prefix
property and also has a fixed length. (It is easy to see that the beta code does not
satisfy the prefix property because, for example, 2 = 105 is the prefix of 4 = 1005.)
Given a set of integers between 0 and n, we can represent each in

1+ |logyn| = [logy(n + 1) (1.1)

bits, a fixed-length representation. When n is represented in any other number base b,
its length is given by the same expression, but with the logarithm in base b instead of 2.

A VLC that can code only positive integers can be extended to encode nonnegative
integers by incrementing the integer before it is encoded and decrementing the result
produced by decoding. A VLC for arbitrary integers can be obtained by a bijection, a
mapping of the form

-2 2 -3 3 -4 4 -5 5

0 -1 1
1 23 4 5 6 7 8 9 10 11

A function is bijective if it is one-to-one and onto.

30 1. Approaches to Compression

1.1.1 Unary Code

Perhaps the simplest variable-length code for integers is the well-known unary code.
The unary code of the positive integer n is constructed from n — 1 1’s followed by a
single 0, or alternatively as n — 1 zeros followed by a single 1 (the three left columns of
Table 1.2). The length of the unary code for the integer n is therefore n bits. The two
rightmost columns of Table 1.2 show how the unary code can be extended to encode
the nonnegative integers (which makes the codes more useful but also one bit longer).
The unary code is simple to construct and is employed in many applications. Stone-age
people indicated the integer n by marking n adjacent vertical bars on a stone, which
is why the unary code is sometimes known as a stone-age binary and each of its n or
(n—1) I’s [or n or (n — 1) zeros] is termed a stone-age bit.

n Code Reverse Alt. code Alt reverse

0 - - 0 1

1 0 1 10 01

2 10 01 110 001

3 110 001 1110 0001

4 1110 0001 11110 00001

5 11110 00001 111110 000001
Stone Age Binary? Table 1.2: Some Unary Codes.

It is easy to see that the unary code satisfies the prefix property. Since its length
L satisfies L = n, we get 27 = 27", 50 it makes sense to use this code in cases were
the input data consists of integers n with exponential probabilities P(n) ~ 27". Given
data that lends itself to the use of the unary code (i.e., a set of integers that satisfy
P(n) &~ 27™), we can assign unary codes to the integers and these codes will be as good
as the Huffman codes, with the advantage that the unary codes are trivial to encode
and decode. In general, the unary code is used as part of other, more sophisticated,
variable-length codes.

Example: Table 1.3 lists the integers 1 through 6 with probabilities P(n) = 27",
except that P(6) is artificially set to 27° ~ 27° in order for the probabilities to add
up to unity. The table lists the unary codes and Huffman codes for the six integers
(see Chapter 2 for the Huffman codes), and it is obvious that these codes have the same
lengths (except the code of 6, because this symbol does not have the correct probability).

*(From The Best Coin Problems, by Henry E. Dudeney, 1909). It is easy to place 16
pennies in a 4 X 4 square such that each row, each column, and each of the two main
diagonals will have the same number of pennies. Do the same with 20 pennies.

1.1.2 Elias Codes

In his pioneering work [Elias 75], Peter Elias described three useful prefix codes. The
main idea of these codes is to prefix the integer being encoded with an encoded repre-
sentation of its order of magnitude. For example, for any positive integer n there is an
integer M such that oM < pn < 2M+1 We can therefore write n = 2M + [where L is

1.1 Variable-Length Codes 31

n Prob Unary Huffman
1 271 0 0
2 272 10 10
3 273 110 110
4 27* 1110 1110
5 27% 11110 11110
6 275 111110 11111

Table 1.3: Six Unary and Huffman Codes.

at most M bits long, and generate a code that consists of M and L. The problem is to
determine the length of M and this is solved in different ways by the various Elias codes.
Elias denoted the unary code of n by a(n) and the standard binary representation of n,
from its most-significant 1, by G(n). His first code was therefore designated v (gamma).
The Elias gamma code v(n) is designed for positive integers n and is simple to
encode and decode.
Encoding. Given a positive integer n, perform the following steps:

1. Denote by M the length of the binary representation 3(n) of n.
2. Prepend M — 1 zeros to it (i.e., the a(n) code without its terminating 1).

Step 2 amounts to prepending the length of the code to the code, in order to ensure
unique decodability.

We now show that this code is ideal for applications where the probability of n is
1/(2n?). The length M of the integer n is, from Equation (1.1), 1 + |logyn], so the
length of y(n) is

2M — 1 = 2[logyn| + 1. (1.2)

In general, given a set of symbols a;, where each symbol occurs in the data with
probability P; and the length of its code is I; bits, the average code length is the sum
>~ P;l; and the entropy (the smallest number of bits required to represent the symbols) is
> [—P;log, P;]. The difference between the average length and the entropy is), Pil; —
>;[—Pilog, P;] and we are looking for probabilities P; that will minimize this difference.

For the gamma code, [; = 1+2log, i. If we select symbol probabilities P; = 1/(2i?)
(a power law distribution of probabilities, where the first 10 values are 0.5, 0.125, 0.0556,
0.03125, 0.02 0.01389, 0.0102, 0.0078, 0.00617, and 0.005), both the average code length
and the entropy become the identical sums

- 242 ’

indicating that the gamma code is asymptotically optimal for this type of data. A
power law distribution of values is dominated by just a few symbols and especially by
the first. Such a distribution is very skewed and is therefore handled very well by the
gamma code which starts very short. In an exponential distribution, in contrast, the
small values have similar probabilities, which is why data with this type of statistical
distribution is compressed better by a Rice code (Section 1.1.3).

32 1. Approaches to Compression

An alternative construction of the gamma code is as follows:

1. Find the largest integer N such that 2V < n < 2N¥*! and write n = 2V + L.
Notice that L is at most an N-bit integer.

2. Encode N in unary either as N zeros followed by a 1 or N 1’s followed by a 0.

3. Append L as an N-bit number to this representation of N.

1=2940=1 10 = 23 +2 = 0001010
2=214+0=010 11 =23 4+3 =0001011
3=2'+1=011 12 =23 +4 = 0001100

4=2%24+0=00100 13 =23+ 5= 0001101
5=224+1=00101 14 =23 +6 = 0001110
6=224+2=00110 15=234+7=0001111
7=2243=00111 16 = 2* + 0 = 000010000
8 =2340=0001000 17 =2*+1= 000010001
9=2%4+1=0001001 18 =2*+2=000010010

Peter Elias Table 1.4: 18 Elias Gamma Codes.

Table 1.4 lists the first 18 gamma codes, where the L part is in italics.
In his 1975 paper, Elias describes two versions of the gamma code. The first version
(titled) is encoded as follows:

1. Generate the binary representation 3(n) of n.
. Denote the length |3(n)| of 3(n) by M.
. Generate the unary u(M) representation of M as M — 1 zeros followed by a 1.
. Follow each bit of 3(n) by a bit of u(M).
. Drop the leftmost bit (the leftmost bit of 5(n) is always 1).

Thus, for n = 13 we prepare 3(13) = 1101, so M = 4 and u(4) = 0001, resulting in
10700011. The final code is v(13) = 0100011.

The second version, dubbed 4/, moves the bits of u(M) to the left. Thus 4/(13) =
0001|101. The gamma codes of Table 1.4 are Elias’s o' codes. Both gamma versions are
universal.

Decoding is also simple and is done in two steps:

Ot W N

1. Read zeros from the code until a 1 is encountered. Denote the number of zeros
by N.
2. Read the next N bits as an integer L. Compute n = 2V 4 L.

It is easy to see that this code can be used to encode positive integers even in cases
where the largest integer is not known in advance. Also, this code grows slowly (see
Figure 1.5), which makes it a good candidate for compressing integer data where small
integers are common and large ones are rare.

Elias delta code. In his gamma code, Elias prepends the length of the code in
unary («). In his next code, ¢ (delta), he prepends the length in binary (3). Thus, the
Elias delta code, also for the positive integers, is slightly more complex to construct.

Encoding a positive integer n, is done in the following steps:

1. Write n in binary. The leftmost (most-significant) bit will be a 1.

1.1 Variable-Length Codes 33

201 Length fmm e
Gamma | Omega
I"-'-l' - -

[— l__.

n 10 100 1000

Figure 1.5: Lengths of Three Elias Codes.

(* Plot the lengths of four codes
1. staircase plots of binary representation *)
bin[i_] := 1 + Floor[Logl[2, ill;
Table[{Log[10, nl, bin[nl}, {n, 1, 1000, 5}1;
gl = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
(* 2. staircase plot of Elias Omega code *)
omegal[n_] := Module[{l, om},
1 = Length[IntegerDigits([n, 2]1;
om =1+ 1;

While[l > 2,
1 = Length[IntegerDigits[l - 1, 2]]; om = om + 1;];
om]

Table[{Log[10, nl, omegalnl}, {n, 1, 1000, 5}1;

g2 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,
PlotStyle —> { AbsoluteDashing[{5, 5}]}]

(* 3. staircase plot of gamma code lengthx)

gam[i_] := 1 + 2Floor([Logl[2, ill;

Table[{Log[10, n], gam[nl}, {n, 1, 1000, 5}1;

g3 = ListPlot[/, AxesOrigin -> {0, 0}, PlotJoined -> True,
PlotStyle -> { AbsoluteDashing[{2, 2}]}]

(* 4. staircase plot of delta code length *)

del[i_] := 1 + Floor[Log[2, il] + 2Floor[Log[2, Log[2, i]l];

Table[{Log[10, n], del[nl}, {n, 2, 1000, 5}];

g4 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,
PlotStyle -> { AbsoluteDashing[{6, 2}1}]

Show([gl, g2, g3, g4, PlotRange -> {{0, 3}, {0, 20}}]

Code for Figure 1.5

2. Count the bits, remove the leftmost bit of n, and prepend the count, in binary,
to what is left of n after its leftmost bit has been removed.

3. Subtract 1 from the count of step 2 and prepend that number of zeros to the
code.

When these steps are applied to the integer 17, the results are: 17 = 10001 (five
bits). Remove the leftmost 1 and prepend 5 = 1015 yields 101|0001. Three bits were
added, so we prepend two zeros to obtain the delta code 00/101|0001.

To determine the length of the delta code of n, we notice that step 1 generates [from
Equation (1.1)] M =1+ |log, n] bits. For simplicity, we omit the | and | and observe
that

M =1+ logyn = log, 2+ log, n = logy(2n).

The count of step 2 is M, whose length C' is therefore C = 1+log, M = 1+log,(log,(2n))

34 1. Approaches to Compression

bits. Step 2 therefore prepends C bits and removes the leftmost bit of n. Step 3 prepends
C —1 =logy M = log,(logy(2n)) zeros. The total length of the delta code is therefore
the 3-part sum

log,(2n) + [1 + log, log, (2n)] — 1 4 log, logy (2n) = 1 + [logy 1] + 2[log, logy(2n) |.

——
step 1 step 2 step 3 (1.3)

Figure 1.5 illustrates the length graphically.

It is easy to show that this code is ideal for data where the integer n occurs with
probability 1/[2n(log,(2n))?]. The length of the delta code is I; = 1+1logi+2loglog(2i).
If we select symbol probabilities P; = 1/[2i(log(2i))?] (where the first five values are 0.5,
0.0625, 0.025, 0.0139, and 0.009), both the average code length and the entropy become
the identical sums

Z log 2 + log i + 21log log(24)
2i(log(21))? ’

indicating that the redundancy is zero and the delta code is therefore asymptotically
optimal for this type of data.
An equivalent way to construct the delta code employs the gamma code:

1. Find the largest integer N such that 2V > n < 2¥+1 and write n = 2V + L.
Notice that L is at most an N-bit integer.

2. Encode N + 1 with the Elias gamma code.

3. Append the binary value of L, as an N-bit integer, to the result of step 2.

When these steps are applied to n = 17, the results are: 17 = 2V + L = 2*+1. The
gamma code of N + 1 =5 is 00101, and appending L = 0001 to this yields 00101]|0001.
Table 1.6 lists the first 18 delta codes, where the L part is in italics.

1=2040—|L|=0—1 10 =23 42 — |L| = 3 — 00100010
2=2"4+0—|L|=1— 0100 11=23+3—|L| =3 — 00100011
3=2'4+1—|L=1— 0101 12=2%+4 —|L| =3 — 00100100
4=224+0—|L=2—01100 13=2%4+5—|L| =3 — 00100101
5=224+1—|L|=2— 01101 14=2%+6—|L =3 — 00100110
6=224+2—|L|=2—01110 15=2%47—|L| =3 — 00100111
7=22+3 - |L|=2— 01111 16 =240 — |L| = 4 — 001010000

8=2340— |L| =3— 00100000 17=2%+1— |L| =4 — 001010001
9=2341—|L| =3— 00100001 18=2%+2— |L|=4 — 001010010

Table 1.6: 18 Elias Delta Codes.

Decoding is done in the following steps:
1. Read bits from the code until you can decode an Elias gamma code. Call the

decoded result M + 1. This is done in the following substeps:
1.1 Count the leading zeros of the code and denote the count by C.

1.1 Variable-Length Codes 35

1.2 Examine the leftmost 2C' + 1 bits (C zeros, followed by a single 1, followed by
C more bits). This is the decoded gamma code M + 1.

2. Read the next M bits. Call this number L.

3. The decoded integer is 2™ + L.

In the case of n = 17, the delta code is 001010001. We skip two zeros, so C' = 2.
The value of the leftmost 2C' 4+ 1 = 5 bits is 00101 = 5, so M +1 = 5. We read the next
M = 4 bits 0001, and end up with the decoded value 2™ + L =2* +1 = 17.

Elias omega code. Unlike the previous Elias codes, the omega code uses itself
recursively to encode the prefix M, which is why it is sometimes referred to as a recursive
Elias code. The main idea is to prepend the length of n to n as a group of bits that
starts with a 1, then prepend the length of the length, as another group, to the result,
and continue prepending lengths until the last length is 2 or 3 (and therefore fits in two
bits). In order to distinguish between a length group and the last, rightmost group (of
n itself), the latter is followed by a delimiter of 0, while each length group starts with a
1.

Encoding a positive integer n is done recursively in the following steps:

1. Initialize the code-so-far to 0.

2. If the number to be encoded is 1, stop; otherwise, prepend the binary represen-
tation of n to the code-so-far. Assume that we have prepended L bits.

3. Repeat step 2, with the binary representation of L — 1 instead of n.

The integer 17 is therefore encoded by (1) a single 0, (2) prepended by the 5-bit
binary value 10001, (3) prepended by the 3-bit value of 5—1 = 1002, and (4) prepended
by the 2-bit value of 3 — 1 = 10;. The result is 10/100/10001]|0.

Table 1.7 lists the first 18 omega codes. Note that n = 1 is handled as a special
case.

1 0 10 1110100
2 100 11 1110110
3 110 12 1111000
4 101000 13 1111010
5 101010 14 1111100
6 101100 15 1111110
7 101110 16 10 100 10000 O
8 11 1000 0 17 10 100 10001 0
9 1110010 18 10 100 10010 0

Table 1.7: 18 Elias Omega Codes.

Decoding is done in several nonrecursive steps where each step reads a group of
bits from the code. A group that starts with a zero signals the end of decoding.
1. Initialize n to 1.

2. Read the next bit. If it is 0, stop. Otherwise read n more bits, assign the group
of n 4+ 1 bits to n, and repeat this step.

— — S

36 1. Approaches to Compression

Some readers may find it easier to understand these steps rephrased as follows.

1. Read the first group, which will either be a single 0, or a 1 followed by n more
digits. If the group is a 0, the value of the integer is 1; if the group starts with a 1, then
n becomes the value of the group interpreted as a binary number.

2. Read each successive group; it will either be a single 0, or a 1 followed by n more
digits. If the group is a 0, the value of the integer is n; if it starts with a 1, then n
becomes the value of the group interpreted as a binary number.

Example. Decode 10/100/10001|0. The decoder initializes n = 1 and reads the first
bit. It is a 1, so it reads n = 1 more bit (0) and assigns n = 105 = 2. It reads the next
bit. It is a 1, so it reads n = 2 more bits (00) and assigns the group 100 to n. It reads
the next bit. It is a 1, so it reads four more bits (0001) and assigns the group 10001 to
n. The next bit read is 0, indicating the end of decoding.

The omega code is constructed recursively, which is why its length |w(n)| can also
be computed recursively. We define the quantity (*(n) recursively by I}(n) = |log, n]
and I**1(n) = 11(I*(n)). Equation (1.1) tells us that |3(n)| = I*(n) + 1 (where 3 is the
standard binary representation), and this implies that the length of the omega code is
given by the sum

k k

wm)| =Y B) +1=1+) (I'(n) +1),

i=1 i=1

where the sum stops at the k that satisfies I¥(n) = 1. From this, Elias concludes that
the length satisfies |w(n)| < 14 3 |log, n].

A glance at a table of these codes shows that their lengths fluctuate. In general,
the length increases slowly as n increases, but when a new length group is added, which
happens when n = 22" for any positive integer k, the length of the code increases
suddenly by several bits. For k values of 1, 2, 3, and 4, this happens when n reaches 4, 16,
256, and 65,536. Because the groups of lengths are of the form “length,” “log(length),”
“log(log(length)),” and so on, the omega code is sometimes referred to as a logarithmic-
ramp code.

Table 1.8 compares the length of the gamma, delta, and omega codes. It shows that
the delta code is asymptotically best, but if the data consists mostly of small numbers
(less than 8) and there are only a few large integers, then the gamma code performs
better.

1.1.3 Rice Codes

The Rice code is named after its originator, Robert F. Rice ([Rice 79], [Rice 91], and
[Fenwick 96a]). This code is a special case of the Golomb code [Salomon 07], which is
why it is sometimes referred to as the Golomb—Rice code.

A Rice code depends on the choice of a base k and is computed in the following
steps: (1) Separate the sign bit from the rest of the number. This is optional and
the bit becomes the most-significant bit of the Rice code. (2) Separate the k LSBs.
They become the LSBs of the Rice code. (3) Code the remaining j = |n/2*] bits as
either j zeros followed by a 1 or j 1’s followed by a 0 (similar to the unary code). This
becomes the middle part of the Rice code. Thus, this code is computed with a few logical

1.1 Variable-Length Codes

Values Gamma Delta Omega
1 1 1 2
2 3 4 3
3 3 4 4
4 5 5 4
5-7 5 5 5
8-15 7 8 6-7
16-31 9 9 T
32-63 11 10 8-10
64-88 13 11 10
100 13 11 11
1000 19 16 16
104 27 20 20
10° 33 25 25
10° 39 28 30

Table 1.8: Lengths of Three Elias Codes.

37

operations, which makes it an ideal candidate for applications where speed is important.
Table 1.9 shows examples of this code for k = 2 (the column labeled “No. of ones” lists
the number of 1’s in the middle part of the code).

No. of
¢ Binary Sign LSB ones Code i Code
0 0 0 00 0 0]0j00
1 1 0 o1 0 0]ojo1 —1 1]0|01
2 10 0 10 0 0|0j10 —2 1]0J10
3 1 0 11 0 0Joj11 -3 10|11
4 100 0 00 1 0]10]00 —4 1|10/00
5 101 0 01 1 0J10/01 —5 1|10]01
6 110 0 10 1 0[10[10 —6 1]10]10
7 111 0 11 1 0J10/11 -7 1]10J11
8§ 1000 0 00 2 0/110/00 —8 1|110/00
11 1011 0 11 2 oO[110/11 —11 111011
12 1100 0 00 3 0[1110/00 —12 1/1110/00
15 1111 0 11 3 0|]1110/11 —15 1]1110J11

Table 1.9: Various Positive and Negative Rice Codes.

The length of the (unsigned) Rice code of the integer n with parameter k is 1+ k +
|n/2%] bits, indicating that these codes are suitable for data where the integer n appears
with a probability P(n) that satisfies logy P(n) = —(1 + k + n/2¥) or P(n) < 27", an
exponential distribution, such as the Laplace distribution. The Rice code is easy to
decode, once the decoder reads the sign bit and skips to the first 0 from the left, it
knows how to generate the left and middle parts of the code. The next k bits should be
read and appended to that.

38

There remains the question of what base value n to select for the Rice codes. The
base determines how many low-order bits of a data symbol are included directly in the
Rice code, and this is linearly related to the variance of the data symbol. Tony Robinson,
the developer of the Shorten method for audio compression [Robinson 94|, provides the
formula n = log,[log(2) E(|x|)], where E(|z|) is the expected value of the data symbols.

1. Approaches to Compression

This value is the sum > |z|p(x) taken over all possible symbols x.

Figure 1.10 lists the lengths of various Rice codes and compares them to the length

of the standard binary (beta) code.

120

80

60

40

20

[Code k=2 3| 4/ 5
Length

ﬁ

—=

=T Binary

Figure 1.10: Lengths of Various Rice Codes.

(* Lengths of binary code and 7 Rice codes *)

bin[i_] := 1 + Floor[Logl[2, il];

Table[{Log[10, n], bin[nl}, {n, 1, 1000000, 500}];

gb = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,
PlotStyle -> { AbsoluteDashing[{6, 2}]}]

ricelk_, n_] := 1 + k + Floor[n/27°k];

k = 2; Table[{Log[10, n], ricelk, nl}, {n, 1, 10000, 10}];

g2 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]

k = 3; Table[{Log[10, n], ricelk, nl}, {n, 1, 10000, 10}]1;

g3 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]

k = 4; Table[{Log[10, n], ricelk, nl}, {n, 1, 10000, 10}];

g4 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]

k = 5; Table[{Log[10, n], ricelk, n]}, {n, 1, 10000, 10}];

gb = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]

k = 8; Table[{Log[10, n], ricelk, n]}, {n, 1, 100000, 503}];

g8 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]

k = 12; Table[{Logl[10, nl, ricelk, nl}, {n, 1, 500000, 100}]1;

gl2 = ListPlot[’, AxesOrigin -> {0, 0}, PlotJoined -> True]

k = 16; Table[{Logl[10, n], ricelk, nl}, {n, 1, 1000000, 100}];

gl6 = ListPlot[’%, AxesOrigin -> {0, 0}, PlotJoined -> True]

Show[gb, g2, g3, g4, g5, g8, gl2, gl6, PlotRange —> {{0, 6}, {0, 120}}]

Code for Figure 1.10

1.1 Variable-Length Codes 39

1.1.4 The Kraft—-McMillan Inequality

The Kraft—McMillan inequality is concerned with the existence of a uniquely decodable
(UD) code. It establishes the relation between such a code and the lengths L; of its
codewords.

One part of this inequality, due to [McMillan 56], states that given a UD variable-
length code, with n codewords of lengths L;, the lengths must satisfy the relation

n
Yoot (1.4)
i=1

The other part, due to [Kraft 49], states the opposite. Given a set of n positive integers
(L1, Lo, . .., Ly,) that satisfy Equation (1.4), there exists an instantaneous variable-length
code such that the L; are the lengths of its individual codewords.

Together, both parts say that there is an instantaneous variable-length code with
codeword lengths L; if and only if there is a UD code with these codeword lengths. The
two parts do not say that a variable-length code is instantaneous or UD if and only if the
codeword lengths satisfy Equation (1.4). In fact, it is easy to check the three individual
code lengths of the code (0,01,011) and verify that 27! + 272 4+ 273 = 7/8. This code
satisfies the Kraft—-McMillan inequality and yet it is not instantaneous, because it is not
a prefix code. Similarly, the code (0,01,001) also satisfies Equation (1.4), but is not
UD. A few more comments on this inequality are in order:

s If a set of lengths L; satisfies Equation (1.4), then there exist instantaneous and
UD variable-length codes with these lengths. For example (0,10, 110).

A UD code is not always instantaneous, but there exists an instantaneous code with
the same codeword lengths. For example, code (0,01, 11) is UD but not instantaneous,
while code (0,10, 11) is instantaneous and has the same lengths.

s The sum of Equation (1.4) corresponds to the part of the complete code tree that
has been used for codeword selection. This is why the sum has to be less than or equal
to 1. This intuitive explanation of the Kraft-McMillan relation is explained in the next
paragraph.

We can gain a deeper understanding of this useful and important inequality by
constructing the following simple prefix code. Given five symbols a;, suppose that we
decide to assign 0 as the code of a;. Now all the other codes have to start with 1. We
therefore assign 10, 110, 1110, and 1111 as the codewords of the four remaining symbols.
The lengths of the five codewords are 1, 2, 3, 4, and 4, and it is easy to see that the sum

1 1 1 2
D e o o e e
+ + + + 5 + 1 + 3 + 6
satisfies the Kraft—-McMillan inequality. We now consider the possibility of constructing
a similar code with lengths 1, 2, 3, 3, and 4. The Kraft-McMillan inequality tells us
that this is impossible, because the sum

1 2 3 3 4

40 1. Approaches to Compression

is greater than 1, and this is easy to understand when we consider the code tree. Starting
with a complete binary tree of height 4, it is obvious that once 0 was assigned as a
codeword, we have “used” one half of the tree and all future codes would have to be
selected from the other half of the tree. Once 10 was assigned, we were left with only
1/4 of the tree. Once 110 was assigned as a codeword, only 1/8 of the tree remained
available for the selection of future codes. Once 1110 has been assigned, only 1/16 of
the tree was left, and that was enough to select and assign code 1111. However, once
we select and assign codes of lengths 1, 2, 3, and 3, we have exhausted the entire tree
and there is nothing left to select the last (4-bit) code from.

The Kraft—-McMillan inequality can be related to the entropy by observing that the
lengths L; can always be written as L; = —logy P; + E;, where E; is simply the amount
by which L; is greater than the entropy (the extra length of code 7).

This implies that

2—Li — 2(10g2 Pi—Ei) — 210g2 Pl/2E1 — P1/2El

In the special case where all the extra lengths are the same (E; = F), the Kraft-McMillan
inequality says that

- Sropoo1
FE 1= E
12}23& :4¥§%i2552$2 >1=— FE>0.
i=1
An unambiguous code has nonnegative extra length, meaning its length is greater than
or equal to the length determined by its entropy.
Here is a simple example of the use of this inequality. Consider the simple case of
n equal-length binary codewords. The size of each codeword is L; = log,n, and the
Kraft-McMillan sum is

n B . n e N 1
2:2L1:2;21g2::§:ﬁ:4.

The inequality is satisfied, so such a code is UD.

A more interesting example is the case of n symbols where the first one is compressed
and the second one is expanded. We set L1 = log,n — a, Ly = logon + e, and Lg =
Ly =---= L, =logyn, where a and e are positive. We show that e > a, which means
that compressing a symbol by a factor a requires expanding another symbol by a larger
factor. We can benefit from this only if the probability of the compressed symbol is
greater than that of the expanded symbol.

n

22—Li _ 2—L1 + 2—L2 + 22—10g2n
1 3

n

— 2—log2 n+a + 2—log2 n—e Z 2—10g2n _9x 2—10g2n
1

0 g 2

+1-2.
n n n

1.2 Run-Length Encoding 41

The Kraft-McMillan inequality requires that

20 9—e 2 20 97¢ 9
S 41-2<1 o 42 <0
n n n n n n

)

or 27¢ <2 —2% implying —e < log,(2 — 29), or e > —logy(2 — 2%).

The inequality above implies a < 1 (otherwise, 2 — 2% is negative) but a is also
positive (since we assumed compression of symbol 1). The possible range of values of
a is therefore (0, 1], and in this range e is greater than a, proving the statement above.
(It is easy to see that a =1 — e > —log, 0 = 00, and a = 0.1 — e > —logy(2 — 201) ~
0.10745.)

It can be shown that this is just a special case of a general result that says, given
an alphabet of n symbols, if we compress some of them by a certain factor, then the
others must be expanded by a greater factor.

1.2 Run-Length Encoding

The technique of run-length encoding (RLE) has been mentioned in the Prelude to this
chapter. The idea is that in certain types of data, such as images and audio, adjacent
symbols are often correlated, so there may be runs of identical symbols which may be
exploited to compress the data. The following are the main considerations that apply
to this technique:

m Text in a natural language (as well as names) may have many doubles and a few
triples—as in AAA (an acronym), abbess, Emmanuelle, bookkeeper, arrowwood, freeer
(old usage), and hostessship (used by Shakespeare)—but longer runs are limited to
consecutive spaces and periods. Thus, RLE is not a good candidate for text compression.

» In a bi-level image there are two types of symbols, namely black and white pixels, so
runs of pixels alternate between these two colors, which implies that RLE can compress
such an image by replacing each run with its length.

» In general, the data to be compressed includes several types of symbols, so RLE
compresses a run by replacing it with a pair (length, symbol).

m If the run is short, such a pair may be longer than the run of symbols, thereby
leading to expansion. A reasonable solution is to write such short runs on the output in
raw format, so at least they do not cause expansion. However, this raises the question
of distinguishing between pairs and raw items, because in the output file both types are
binary strings. A practical RLE program must therefore precede each pair and each raw
item with a 1-bit indicator. Thus, a pair becomes the triplet (0, length, symbol) and a
raw item becomes the pair (1, symbol).

s Runs have different lengths, which is why the pairs and triplets have different
lengths. It therefore makes sense to replace each by a variable-length code and write the
codes on the output. Thus, RLE is normally just one step in a multistep compression
algorithm that may include a transform, variable-length codes, and perhaps also quan-
tization. The fax compression standard (Section 2.4) and the JPEG image compression

42 1. Approaches to Compression

method (Section 5.6) employ specially-selected Huffman codes to write the run lengths
on the output.

The remainder of this section provides more information on the application of RLE
to the compression of bi-level and grayscale images.

The size of the compressed data depends on the complexity of the image. The more
detailed the image, the worse the compression. However, given an image with uniform
regions, it is easy to estimate the compression ratio of RLE. Figure 1.11 shows how scan
lines go through a uniform region. A line enters through one point on the perimeter of
the region and exits through another point, and these two points are not part of any
other scan lines. It is now clear that the number of scan lines traversing a uniform region
is roughly equal to half the length (measured in pixels) of its perimeter. Since the region
is uniform, each scan line contributes two runs to the output for each region it crosses.
The compression ratio of a uniform region therefore roughly equals the ratio

2 x half the length of the perimeter perimeter

total number of pixels in the region area

[— =

N

LT
f
\\\/

;|

\)

Figure 1.11: Uniform Areas and Scan Lines.

o Exercise 1.4: What would be the compressed file in the case of the following 6 x 8
bi-level image?

RLE can also be used to compress grayscale images. Each run of pixels of the same
intensity (gray level) is encoded as a pair (run length, pixel value). The run length
is either emitted as one byte, allowing for runs of up to 255 pixels, or is encoded by
a variable-length code. The pixel value is encoded in a short fixed-length code whose
length depends on the number of gray levels (typically between 4 and 8 bits).

1.2 Run-Length Encoding 43
Example: An 8-bit-deep grayscale bitmap that starts with
12,12,12,12,12,12,12, 12,12, 35,76, 112, 67, 87,87,87,5,5,5,5,5,5, 1, . ..

is compressed into the sequence of bytes [9],12,35,76,112,67,3],87,6,5,1,..., where the
boxed values indicate counts. The problem is to distinguish between a byte containing
a grayscale value (such as 12) and one containing a count (such as [9]). Here are some
solutions (although not the only possible ones):

m If the image is limited to just 128 grayscales, we can devote one bit in each byte to
indicate whether the byte contains a grayscale value or a count.

m If the number of grayscales is 256, it can be reduced to 255 with one value reserved
as a flag to precede every byte containing a count. If the flag is, say, 255, then the
sequence above becomes 255,9,12,35,76,112,67,255,3,87,255,6,5,1,. ...

m Again, one bit is devoted to each byte to indicate whether the byte contains a
grayscale value or a count. This time, however, these extra bits are accumulated in
groups of 8, and each group is written on the output preceding (or following) the eight
bytes it corresponds to.

As an example, the sequence [9],12,35,76,112,67,3],87[6],5,1,... becomes

The total size of the extra bytes is, of course, 1/8 the size of the output (they contain
one bit for each byte of the output), so they increase the size of the output by 12.5%.

m A group of m pixels that are all different is preceded by a byte with the negative
value —m. The sequence above is encoded by 9,12, —4,35,76,112,67,3,87,6,5,7,1,...
(the value of the byte with ? is positive or negative depending on what follows the pixel
of 1). The worst case is a sequence of pixels (p1, p2, p2) repeated n times throughout the
bitmap. It is encoded as (—1,p1,2, p2), four numbers instead of the original three! If
each pixel requires one byte, then the original three bytes are expanded into four bytes.
If each pixel requires three bytes, then the original three pixels (which constitute nine
bytes) are compressed into 1 4+ 3 + 1 + 3 = 8 bytes.

Three more points should be mentioned:

= Since the run length cannot be 0, it makes sense to write the [run length minus one]
on the output. Thus the pair (3,87) denotes a run of four pixels with intensity 87. This
way, a run can be up to 256 pixels long.

= In color images it is common to have each pixel stored as three bytes, represent-
ing the intensities of the red, green, and blue components of the pixel. In such a
case, runs of each color should be encoded separately. Thus, the pixels (171,85, 34),
(172,85,35), (172,85,30), and (173,85, 33) should be separated into the three vectors
(171,172,172,173,...), (85, 85,85, 85, ...), and (34, 35, 30,33, ...). Each vector should be
run-length encoded separately. This means that any method for compressing grayscale
images can be applied to color images as well.

m It is preferable to encode each row of the bitmap individually. Thus, if a row ends
with four pixels of intensity 87 and the following row starts with nine such pixels, it is

44 1. Approaches to Compression

better to write ...,4,87,9,87,... on the output rather than ...,13,87,.... It is even
better to output the sequence ...,4,87,e0l,9,87,..., where “eol” is a special end-of-
line code. The reason is that sometimes the user may decide to accept or reject an
image just by examining a rough version of it, without any details. If each line is
encoded individually, the decoding algorithm can start by decoding and displaying lines
1,6,11,..., follow with lines 2,7,12,..., and continue in the same way. The individual
rows of the image are interlaced, and the image is displayed on the screen gradually, in
steps. This way, it is possible to get an idea of what is in the image at an early stage,
when only a small fraction of it has been displayed. Figure 1.12c shows an example of
such a scan.

— 1
% 4

7

2

5

% 8

3

6

9

— 10

(a) (b) ()

Figure 1.12: RLE Scanning.

Another advantage of individual encoding of rows is to make it possible to extract
just part of an encoded image (such as rows k through [). Yet another application is to
merge two compressed images without having to decompress them first.

If this idea (encoding each bitmap row individually) is adopted, then the compressed
file must contain information on where each bitmap row starts in the file. This can be
done by writing, at the start of the file, a header with a group of four bytes (32 bits) for
each bitmap row. The kth group contains the offset (in bytes) from the start of the file
to the start of the information for image row k. This increases the size of the compressed
file but may still offer a good trade-off between space (size of compressed file) and time
(time for the user to decide whether to accept or reject the image).

Exercise 1.5: There is another, obvious, reason why each bitmap row should be coded
individually. What is it?

Exercise 1.6: In the encoding of a run length, a special symbol has been used to signal
the end of a scan line. Is the insertion of the eol always necessary? If we decide to signal
the end of a scan line, is it really necessary to allocate a special symbol for it?

1.2 Run-Length Encoding 45

% Returns the run lengths of

% a matrix of Os and 1s

function R=runlengths (M)

[c,r]=size(M);

for i=1:c;

x(rx(i-1)+1:r*xi)=M(i,:);

end

N=r*c;

y=x(2:N);

u=x(1:N-1);

z=y+u;

j=find(z==1);

i1=[j NI;

i2=[0 j1; W W

R=11-12; I N
N AN W

the test W W

M=[0 00 1; 1 110; 1110] HEEEEEE |

runlengths (M) HERERRENR
HEREREN |

produces ENEEEEEN

3 4 1 3 1

() (b)

Figure 1.13: (a) Matlab Code To Compute Run Lengths. (b) A Bitmap.

Figure 1.13a lists Matlab code to compute run lengths for a bi-level image. The
code is very simple. It starts by flattening the matrix into a one-dimensional vector, so
the run lengths continue from row to row.

Image RLE has its downside as well. When the image is modified, the run lengths
normally have to be completely redone. The RLE output can sometimes be bigger
than pixel-by-pixel storage (i.e., an uncompressed image, a raw dump of the bitmap)
for complex pictures. Imagine a picture with many vertical lines. When it is scanned
horizontally, it produces very short runs, resulting in very bad compression, or even in
expansion. A good, practical RLE image compressor should be able to scan the bitmap
by rows, columns, or in a zigzag pattern (Figure 1.12a,b) and it may even try all three
ways on every bitmap it compresses to achieve the best compression.

Exercise 1.7: Figure 1.12 shows three alternative scannings of an image. What is the
advantage of method (b) over (a) and (c)? Does method (b) have any disadvantage?

Exercise 1.8: Given the 8 x 8 bitmap of Figure 1.13b, use RLE to compress it, first
row by row, then column by column. Describe the results in detail.

Lossy RLE Image Compression. It is possible to achieve better compression if
short runs are ignored. Such a method loses information when compressing an image,
but this is sometimes acceptable. (Medical X-rays and images taken by large telescopes
are examples of data whose compression must be lossless.)

A lossy run-length encoding algorithm should start by asking the user for the longest
run that can be ignored. If the user specifies 3, then the program merges all runs

46 1. Approaches to Compression

of 1, 2, or 3 identical pixels with their two immediate neighbors. The run lengths
“6,8,1,2,4,3,11,2” would be saved, in this case, as “6,8,7,16” where 7 is the sum 1 +
2 + 4 (three runs merged) and 16 is the sum 3 + 11 + 2. This makes sense for large,
high-resolution images where the loss of some detail may be imperceptible, but may
significantly reduce the size of the output file.

A®r Intermezzo “®r

Space-Filling Curves. A space-filling curve is a parametric function P(¢) that passes
through every mathematical point in a given two-dimensional region, normally the unit
square, when its parameter ¢ varies in the interval [0, 1]. For any real to in this interval,
P(tp) is a point [zg, yo] in the unit square. Mathematically, such a curve is a mapping
from the interval [0,1] to the two-dimensional interval [0,1] x [0,1]. To understand
how such a curve is constructed, it is best to think of it as the limit of an infinite
sequence of recursively-constructed curves Py (t), Pa(t), ..., which are drawn inside the
unit square, where each curve is derived from its predecessor by a process of refinement
which produces longer and longer curves. The details of the refinement depend on the
specific curve. The most-well-known space-filling curves are the Peano curve, the Hilbert
curve, and the Sierpiniski curve. Because the recursive sequence of curves is infinite, it
is impossible to compute all its components. In practice, however, we are interested in a
curve that passes through every pixel in a finite bitmap, not through every mathematical
point in the unit square.

Space-filling curves are useful in data compression, specifically in image compres-
sion, because they provide another way of scanning a bitmap. Given an image that we
want to compress by RLE, we can scan it by rows, by columns, in a zigzag pattern, or
in the order provided by a space-filling curve.

The Hilbert Curve

This discussion is based on the approach taken by [Wirth 76]. The most familiar
of the space-filling curves is the Hilbert curve, described by the great mathematician
David Hilbert in 1891. The Hilbert curve [Hilbert 91] is the limit of a sequence Hy, Hq,
Hs, ...of curves, some of which are shown in Figure 1.14. Each curve H; is constructed
recursively by making four copies of the preceding curve H;_1, shrinking, rotating, and
connecting them. The resulting curve H; ends up covering the same area as its prede-
cessor, but is longer. This is the refinement process for the Hilbert curve.

The curve is defined by the following steps:

0. Hj is a single point.

1. H; consists of four copies of (the point) Hy, connected with three straight seg-
ments of length h at right angles to each other. Four orientations of this curve, labeled
1, 2, 3, and 4, are shown in Figure 1.14a.

2. The next curve, Ho, in the sequence is constructed by connecting four copies of
different orientations of H; with three straight segments of length h/2 (shown in bold
in Figure 1.14b). Again there are four possible orientations of Ha, and the one shown is
#2. It is constructed of orientations 1223 of Hy, connected by segments that go to the
right, up, and to the left. The construction of the four orientations of Hs is summarized
in Figure 1.14d.

1.3 Dictionary-Based Methods 47

Curve Hj is shown in Figure 1.14c. The particular curve shown is orientation 1223
of HQ.

1 3 3 2
L27 1—=1] 4

- 221 —-27 2«3
2 4 5 3:4] 337 2
L 1 4:3—4| 41

(a) (b) (c) (d)

Figure 1.14: Hilbert Curves of Orders 1, 2, and 3 and Construction Rules.

A chess board has 64 squares. Given a set of 32 cardboard rectangles, each covering
two adjacent squares, we can easily use them to cover the entire board. We now remove
two diagonally-opposite squares from the chess board, leaving 62 squares. Can they be
covered by 31 cardboard rectangles?

1.3 Dictionary-Based Methods

Dictionary-based compression methods are based on the fact that parts of data tend
to appear several times in a given data file. Thus, a text file may contain several
occurrences of a word, a phrase, or a syllable. In an image file, the same string of pixels
may appear many times, and in an audio file, a string of audio samples may also appear
repeatedly. A dictionary-based method maintains a dictionary that contains bits and
pieces of the data. As a string of data symbols is read from the input, the algorithm
searches the dictionary for the longest match to the string. Once a match is found,
the string is compressed by replacing it with a pointer to the dictionary. Quite a few
dictionary-based methods are known and the differences between them are in the way
they organize and maintain the dictionary, in how they handle strings not found in the
dictionary, and in how they write their results (pointers, lengths, raw items, and perhaps
flag bits) on the output.

The entire field of dictionary-based compression is based on the pioneering work
of two researchers, Jacob Ziv and Abraham Lempel. In 1977 and 1978, they published
two papers that laid the foundation of this field and on which later workers based their
algorithms. The basic methods developed by Ziv and Lempel have become known as
LZ77 and LZ78, and most other dictionary-based algorithms include the digram LZ in
their names. The remainder of this section describes LZ77, a simple, albeit not very
efficient, dictionary-based method.

1.3.1 LZ77 (Sliding Window)

LZ77 (sometimes also referred to as LZ1) was originally proposed in [Ziv and Lempel 77].
The main idea is to use part of the previously-processed input as the dictionary. The

48 1. Approaches to Compression

encoder maintains a window to the input data and shifts the input in that window from
right to left as strings of symbols are being read and encoded. Thus, the method is
based on a sliding window. The window shown here is divided into two parts. The part
on the left is the search buffer. This is the current dictionary, and it includes symbols
that have recently been input and encoded. The part on the right is the look-ahead
buffer, with text yet to be read and encoded. In practical implementations the search
buffer is some thousands of bytes long, while the look-ahead buffer is only tens of bytes
long. The vertical bar between the t and the e represents the dividing line between the
two buffers. It indicates that the text sirsid eastman easily,t has already been
compressed, while the text eases_sea_sick_seals still needs to be compressed.

< coded text. . .[sirusidueastmanueasilyut|easesuseausickuseals]. .. < text to be read

The encoder scans the search buffer backwards (from right to left) looking for a
match for the first symbol e in the look-ahead buffer. It finds one at the e of the word
easily. This e is at a distance (offset) of 8 from the end of the search buffer. The
encoder then matches as many symbols following the two e’s as possible. Three symbols
eas match in this case, so the length of the match is 3. The encoder then continues the
backward scan, trying to find longer matches. In our case, there is one more match, at
the word eastman, with offset 16, and it has the same length. The encoder selects the
longest match or, if they are all the same length, the last one found, and prepares the
token (16, 3, e).

Selecting the last match, rather than the first one, simplifies the encoder, because it
has to keep track of only the last match found. It is interesting to note that selecting the
first match, while making the program somewhat more complex, also has an advantage.
It selects the smallest offset. It would seem that this is not an advantage, because a
token should have room enough for the largest possible offset. However, a sophisticated,
multistep compression algorithm may employ LZ77 as a first step, following which the
LZ77 tokens may be compressed further by replacing them with variable-length codes.

Exercise 1.9: How does the decoder know whether the encoder selects the first match
or the last match?

Exercise 1.10: Assuming a very long search buffer, what can we say about the distri-
bution of matches? Would there be more matches in the older part (on the left), in the
newer part (on the right), or would the distribution of matches be more or less uniform?

In general, an LZ77 token has three parts: offset, length, and next symbol in the
look-ahead buffer (which, in our case, is the second e of the word teases). This token
is written on the output, and the window is shifted to the right (or, alternatively, the
input is moved to the left) four positions: three positions for the matched string and
one position for the next symbol.

...sir Jsid_eastman easily tease[s sea_ sickyseals...|....

If the backward search yields no match, an LZ77 token with zero offset and length
and with the unmatched symbol is generated and emitted. This is also the reason a
token has a third component. Tokens with zero offset and length are common at the

1.3 Dictionary-Based Methods 49

beginning of any compression job, when the search buffer is empty or almost empty.
The first five steps in encoding our example are the following:

[[sir sid eastman] = ()
[s[ir_sid eastman_e¢ = ()
[silr_sid_ eastman_ea = (0,0,r)
[= (0,0,u)
l = (4,2,d)

sir| sid_eastman eas
sir [sid_eastman easi]

Exercise 1.11: What are the next two steps?

Clearly, a token of the form (0,0, ...), which encodes a single symbol, provides lousy
compression and may also cause expansion. It is easy to estimate its length. The size
of the offset is [log, ST, where S is the length of the search buffer. In practice, the
search buffer may be a few thousand bytes long, so the offset size is typically 10-12 bits.
The size of the “length” field is similarly [log,(L — 1)], where L is the length of the
look-ahead buffer (see below for the —1). In practice, the look-ahead buffer is only a
few tens of bytes long, so the size of the “length” field is just a few bits. The size of the
“symbol” field is typically 8 bits, but in general, it is [log, A], where A is the alphabet
size. The total size of the 1-symbol token (0,0,...) may typically be 11 + 5+ 8 = 24
bits, much longer than the raw 8-bit size of the (single) symbol it encodes.

Here is an example showing why the “length” field may be longer than the size of
the look-ahead buffer:

...Mr. [alf eastman easily grows_alf[alfa in his jgarden...

The first symbol a in the look-ahead buffer matches the five a’s in the search buffer. It
seems that the two extreme a’s match with a length of 3 and the encoder should select
the last (leftmost) of them and create the token (28,3,a). In fact, it creates the token
(3,4,1). The four-symbol string alfa in the look-ahead buffer is matched with the last
three symbols alf in the search buffer and the first symbol a in the look-ahead buffer.
The reason for this is that the decoder can handle such a token naturally, without any
modifications. It starts at position 3 of its search buffer and copies the next four symbols,
one by one, extending its buffer to the right. The first three symbols are copies of the
old buffer contents, and the fourth one is a copy of the first of those three. The next
example is even more convincing (and only somewhat contrived):

- -[alf eastman easily yells A[AAAAAAAAAAAAAAAH. ..

The encoder creates the token (1,9,A), matching the first nine copies of A in the look-
ahead buffer and including the tenth A. This is why, in principle, the length of a match
can be up to the size of the look-ahead buffer minus 1.

The decoder is much simpler than the encoder (LZ77 is therefore an asymmetric
compression method). It has to maintain a buffer, equal in size to the encoder’s window.
The decoder inputs a token, finds the match in its buffer, writes the match and the
third token field on the output, and shifts the matched string and the third field into
the buffer. This implies that LZ77, or any of its variants, is useful in cases where a file is
compressed once (or just a few times) and is decompressed often. A rarely-used archive
of compressed files is a good example.

50 1. Approaches to Compression

At first it seems that this method does not make any assumptions about the input
data. Specifically, it does not pay attention to any symbol frequencies. A little thinking,
however, shows that because of the nature of the sliding window, the LZ77 method
always compares the look-ahead buffer to the recently-input text in the search buffer
and never to text that was input long ago (which has therefore been flushed out of the
search buffer). Thus, the method implicitly assumes that patterns in the input data
occur close together. Data that satisfies this assumption compresses well.

The basic LZ77 method was improved in several ways by researchers and program-
mers during the 1980s and 1990s. One way to improve it is to use variable-size “offset”
and “length” fields in the tokens. Another option is to increase the sizes of both buffers.
Increasing the size of the search buffer makes it possible to find better matches, but
the trade-off is an increased search time. A large search buffer therefore requires a so-
phisticated data structure that allows for fast search. A third improvement has to do
with sliding the window. The simplest approach is to move all the text in the window
to the left after each match. A faster method is to replace the linear window with a
circular queue, where sliding the window is done by resetting two pointers. Yet another
improvement is adding an extra bit (a flag) to each token, thereby eliminating the third
field. Of special notice is the hash table employed by the Deflate algorithm [Salomon 07]
to search for matches.

1.4 Transforms

A transform is a mathematical operation that changes the appearance or representation
of the objects being transformed. A transform by itself does not compress data and
is only one step in a multistep compression algorithm. However, transforms play an
important role in data compression, especially in the compression of images. A digital
image can be compressed mainly because neighboring pixels tend to be similar; the
individual pixels are correlated. An image transform takes advantage of this feature and
converts correlated pixels to a representation where they are independent.

Two types of transforms are employed in image compression, namely orthogonal and
subband. They are described in detail in Chapter 5, while this section only illustrates
the power of a transform by an example. Consider the simple mathematical expression

oy cos45° —sind5°\ 1 /1 -1\ _
({I? Y) - ($,y) (sin45° cos 45°) - (xay)ﬁ <1 1) - (.’E,y)R (15)

When applied to a pair (z,y) of consecutive pixels, this expression yields a pair (z*, y*) of
transform coefficients. As a simple experiment, we apply it to five pairs of correlated (i.e.,
similar) numbers to obtain (5,5) — (7.071,0), (6,7) — (9.19,0.7071), (12.1,13.2) —
(17.9,0.78), (23,25) — (33.9,1.41), and (32,29) — (43.13,—2.12). A quick glance at
these numbers verifies their significance. The y* transform coefficient of each pair is a
small (signed) number, close to zero, while the z* coefficient is not appreciably different
from the corresponding x value.

1.5 Quantization 51

o Exercise 1.12: Why does a 45° rotation decorrelate pairs of consecutive pixels?

If we apply this simple transform to all the pixels of an image, two adjacent pixels
at a time, it reduces the sizes of half the pixels without significantly changing the sizes of
the other half. In principle, some compression has already been obtained, but in practice
we need an algorithm that replaces the transform coefficients with variable-length codes,
so they can be output and later input unambiguously. A sophisticated algorithm may
extend this transform so that it can be applied to triplets (or even larger n-tuples) of
pixels, not just pairs. This will result in two-thirds of the pixels being transformed into
small numbers, while the remaining third will not change much in size. In addition,
such an algorithm may quantize the small transform coefficients, which results in lossy
compression, but also a better compression ratio.

In order to be practical, a transform must have an inverse. A simple check verifies
that the inverse of our transform is the expression

1 1 1
_ * * -1 _ * * T * *_—
@) =R = R =) (1))
Chapter 5 discusses this transform and its interpretation in some detail. The matrix of
Equation (5.1) is a rotation matrix in two dimensions, and the matrix of Equation (5.2)
is its inverse.

o Exercise 1.13: It seems that this simple transform has produced something for nothing.
It has shrunk the sizes of half the numbers without a similar increase in the sizes of the
other half. What’s the explanation?

1.5 Quantization

The dictionary definition of the term “quantization” is “to restrict a variable quan-
tity to discrete values rather than to a continuous set of values.” In the field of data
compression, quantization is employed in two contexts as follows:

» If the data symbols are real numbers, quantization may round each to the nearest
integer. If the data symbols are large numbers, quantization may convert them to small
numbers. Small numbers take less space than large ones, so quantization generates
compression. On the other hand, small numbers convey less information than large
ones, which is why quantization produces lossy compression.

s If the data to be compressed is analog (such as a voltage that varies with time),
quantization is employed to digitize it into numbers (normally integers). This is referred
to as analog-to-digital (A/D) conversion. If the integers generated by quantization are
8 bits each, then the entire range of the analog signal is divided into 256 intervals
and all the signal values within an interval are quantized to the same number. If 16-bit
integers are generated, then the range of the analog signal is divided into 65,536 intervals.
This relation illustrates the compromise between high resolution (a large number of
analog intervals) and high compression (small integers generated). This application of
quantization is used by several speech compression methods.

52 1. Approaches to Compression

I would not have the courage to raise this possibility if Academician Arkhangelsky
had not come tentatively to the same conclusion. He and I have disagreed about
the quantization of quasar red shifts, the explanation of superluminal light sources,
the rest mass of the neutrino, quark physics in neutron stars.... We have had many
disagreements.

—Carl Sagan, Contact (1986)

If the data symbols are numbers, then each is quantized to another number in a
process referred to as scalar quantization. Alternatively, if each data symbol is a vector,
then vector quantization converts a data symbol to another vector. Both aspects of
quantization are discussed here.

1.5.1 Scalar Quantization

We start with an example of naive discrete quantization. Given input data of 8-bit
numbers, we can simply delete the least-significant four bits of each data item. This
is one of those rare cases where the compression factor (= 2) is known in advance and
does not depend on the data. The input data consists of 256 different symbols, while
the output data consists of just 16 different symbols. This method is simple but not
very practical because too much information is lost in order to get the unimpressive
compression factor of 2.

The popular JPEG method for image compression (Section 5.6) is based on the
discrete cosine transform (DCT) that transforms a square n x n array of pixel values to
a list of n? transform coefficients, of which the first is large and the rest are small. A
typical output for n = 4 may look like 1171, 34.6, 2, 0, 0, 0, —1, 3.8, 0, 1, 0, 0, 7.15,
2, 0, and 0. Scalar quantization may convert this list to 1171, 34, 2, 0, 0, 0, 0, 4, 0, 0,
0,0, 7, 2,0, and 0. The latter list can be highly compressed by replacing each nonzero
coefficient and each run of zeros by variable-length codes.

A better approach to scalar quantization employs a spacing parameter. We assume
that the data consists of 8-bit unsigned integers and we select a spacing parameter s. We
compute the sequence of uniform quantized values 0, s, 2s, ..., ks, such that ks < 255
but (k+ 1)s > 255. Each input symbol S is quantized by converting it to the nearest
value in this sequence. Selecting s = 3, for example, produces the uniform sequence 0,
3,6,9, 12, ..., 252, 255. Selecting s = 4 produces 0, 4, 8, 12, ..., 252, 255 (since the
next multiple of 4, after 252, is 256).

A similar approach is to select the quantized values in such a way that any integer
in the range [0,255] will be no more than d units distant from one of the quantized
values. This is done by dividing the range [0,255] into segments of size 2d + 1. If we
select d = 16, then the relation 256 = 7(2 x 16 + 1) + 25 implies that the range [0, 255]
should be partitioned into eight segments, seven of size 33 each and one of size 25. The
eight segments cover the subintervals 0-32, 33-65, 66-98, 99-131, 132-164, 165-197,
198-230, and 231-255. We select the middle of each segment as a quantized value and
end up with the eight values 16, 49, 82, 115, 148, 181, 214, and 243. Any integer in the
range [0, 255] is at most 16 units distant from any of these values.

The quantized values above make sense in cases where each symbol appears in the
input data with equal probability (cases where the source is i.i.d.). If the input data is
not uniformly distributed, the sequence of quantized values should be distributed in the

1.5 Quantization 53

same way as the data.

(A sequence or any collection of random variables is independent and identically
distributed (i.i.d.) if all have the same probability distribution and are mutually inde-
pendent. All other things being equal, a sequence of die rolls, a sequence of coin flips,
and an unbiased random walk are i.i.d., because a step has no effect on the following

step.)

bbbbbbbb bbbbbbbb
11
0 2
11 3 .
100 4 100/000 32
101 5 101/000 40
110 6 110/000 48
117 111/000 56
1000 8 100[0000 64
101/0 10 101/0000 80
1100 12 110[0000 96
1110 14 111/0000 112

100/00 16 100/00000 128
101]00 20 10100000 160
110/00 24 110/00000 192
111100 28 111]00000 224

Table 1.15: A Logarithmic Quantization Table.

Imagine, for example, input data of 8-bit unsigned integers of which most are zero
or close to zero and only a few are large. A good sequence of quantized values for such
data should have the same distribution, i.e., many small values and only a few large ones.
One way of computing such a sequence is to select a value for the length parameter [,
to construct a “window” of the form

1b...0b
—
l

(where each b is a bit), and place it under each of the 8-bit positions of a data item. If
the window sticks out to the right, some of the [bits are truncated. As the window is
moved to the left, zero bits are appended to it. Table 1.15 illustrates this construction
with [= 2. Tt is easy to see how the resulting quantized values start with initial spacing
of one unit (i.e., the first eight quantized values are 1 through 8), continue with spacing
of two units (the next four quantized values are 8, 10, 12, and 14) and four units, until
the last four values are spaced by 32 units (such as 192 and 224). The numbers 0 and
255 should be manually added to such a quasi-logarithmic sequence to make it more
general.

Figure 1.16 illustrates another aspect of scalar quantization, namely midtread versus
midrise quantization. The figure shows how continuous (real) z input values (also called

54 1. Approaches to Compression

decision levels) are quantized to discrete y outputs (also called reconstruction levels).
The midtread quantization principle is to quantize to y; all the input values in the
subinterval ((x;—1 + 2;)/2, (z; + 2;41)/2], which is centered on z;. In contrast, the
philosophy behind midrise quantization is to quantize the subinterval (z;_1,z;] to y;.
Notice that these subintervals are open on the left and closed on the right, but the
reverse edge convention can also be used.

tput tput
yal outpu outpu
yat —
Y3 T
Y3 T
Y2 T
Y2
it
—+J0 — : :y1 ——
—T2 T1 T2 T3 T4 —I2 o T1 T2 T3 T4
T—n input 1y input
midtread midrise

Figure 1.16: Midtread and Midrise Quantization.

It is often convenient to use midrise quantization when the number of quantization
values (the y;) is even and employ midtread quantization when this number is odd. Also,
because of its construction, midrise quantization does not have 0 as a quantization value,
which is why applications where certain inputs should be quantized to 0 use midtread.

Notice that the input intervals (z;_1, z;] in Figure 1.16 are uniform (except for the
two extreme intervals) and the same is true for the output values. The figure illustrates
uniform quantization.

It makes sense to define the quantization error as the difference between an input
value and its quantized value, and Figure 1.17 illustrates the behavior of this error as
a function of the input. Part (a) of the figure shows a uniform midtread quantizer and
part (b) shows how the error behaves as a periodic sawtooth function, rising from —0.5
to 0.5, then dropping back to —0.5.

Nonuniform quantization has to be used in applications where the input is dis-
tributed nonuniformly. Table 1.18 (after [Lloyd 82], [Max 60], and [Paez and Glisson 72])
lists input and quantized values for optimal symmetric quantizers for uniform, Gaus-
sian, and Laplace distributions with zero mean and unit variance and for 2, 4, 8, and 16
subintervals of the input.

Scalar quantization produces lossy compression, but makes it is easy to control
the trade-off between compression performance and the amount of data loss. However,
because it is so simple, applications of scalar quantization are limited to cases where
much loss can be tolerated. Many image compression methods are lossy, but scalar
quantization is not suitable for image compression because it creates annoying artifacts
in the decompressed image. Imagine an image with an almost uniform area where all
pixels have values 127 or 128. If 127 is quantized to 111 and 128 is quantized to 144,
then the result, after decompression, may resemble a checkerboard where adjacent pixels

1.5 Quantization 55

14 0.5
7 input
-0.5 p
+ + + + + + + ¥
15 05 1.5 25 3.5 /.5% 0%1.5 2.5 /3.5
71 1 20.5

(a) (b)

Figure 1.17: Midtread Quantization Error.

alternate between 111 and 144. This is why practical algorithms use vector quantization,
instead of scalar quantization, for lossy (and sometimes lossless) compression of images
and sound.

1.5.2 Vector Quantization

Vector quantization is based on the fact that adjacent data symbols in image and audio
files are correlated. The principle is simple and is stated in the following steps:

m Select a parameter N that will be the size of the vectors and work with groups
(called vectors) of N adjacent data symbols (pixels or audio samples).

m Prepare a set (referred to as a codebook) of vectors V;. Determining the best vectors
for the codebook is the central problem of vector quantization.

m Scan the input data vector by vector and compress each vector v; by finding the
codebook vector V; that is “nearest” v;. The index j is then written on the output.

The left half of Figure 1.19 is a simple example. The original data is a 4 x 12
image and the codebook consists of five vectors, each a smaller 4 x 4 image. The arrow
indicates that vector 3 is the best match for the center-bottom 4 x 4 part of the image.
Thus, that part is encoded as the single number 3 (in practice, a variable-length code
for 3 may be written on the output).

It is obvious that the decoder is very simple. It inputs numbers from the compressed
file and interprets each number as an index to the codebook. The corresponding vector
is read from the codebook and is appended to the data that’s being decompressed. The
encoder, on the other hand, is more complex (vector quantization is therefore a highly
asymmetric compression method). For each part of the original data, the encoder has
to search the entire codebook and determine the best match. There is also the question
of selecting the best vectors and constructing the codebook in the first place.

We can gain a deeper understanding of vector quantization by thinking of it as a
partitioning of space. The right half of Figure 1.19 is a two-dimensional (approximate)
example of space partitioning. Given a number of points in space (nine points in the
figure), the space is partitioned into the same number of nonoverlapping regions with
one of the given points at the center of each region. The regions are selected such that

56

2

4

8

16

1. Approaches to Compression

Uniform Gaussian Laplacian
—1.000 —00 —00
0.000 —0.500 0.000 —0.799 0.000 —0.707
0.500 0.799 0.707
1.000 00
—1.000 —00 —00
—0.750 —1.510 —1.834
—0.500 —0.982 —1.127
—0.250 —0.453 —0.420
0.000 0.000 0.000
0.500 0.250 0.932 0.453 1127 0.420
' 0.750 ' 1.510 ' 1.834
1.000 00
—1.000 —00 —00
—0.875 —2.152 —3.087
—0.750 —1.748 —2.377
—0.625 —1.344 —1.673
—0.500 —1.050 —1.253
—0.375 —0.756 —0.833
—0.250 —0.501 —0.533
—0.125 —0.245 —0.233
0.000 0.000 0.000
0.125 0.245 0.233
0.250 0.501 0.533
0.375 0.756 0.833
0.500 1.050 1.253
0.750 0.625 1.748 1.344 9377 1.673
' 0.875 ' 2.152 ' 3.087
1.000 00
—1.000 —00 —00
—0.938 —2.733 —4.316
—0.875 —2.401 —3.605
—0.813 —2.069 —2.895
—0.750 —1.844 —2.499
—0.688 —1.618 —2.103
—0.625 —1.437 —1.821
—0.563 —1.256 —1.540
—0.500 —1.099 —1.317
—0.438 —0.942 —1.095
—0.375 —0.800 —0.910
—0.313 —0.657 —0.726
—0.250 —0.522 —0.566
—0.188 —0.388 —0.407
—0.125 —0.258 —0.266
—0.063 —0.128 —0.126
0.000 0.000 0.000
0.063 0.128 0.126
0.125 0.258 0.266
0.188 0.388 0.407
0.250 0.522 0.566
0.313 0.657 0.726
0.375 0.800 0.910
0.438 0.942 1.095
0.500 1.099 1.317
0.563 1.256 1.540
0.625 1.437 1.821
0.688 1.618 2.103
0.750 1.844 2.499
0.875 0.813 2401 2.069 3605 2.895
0.938 2.733 4.316
1.000 00

Table 1.18: Uniform and Nonuniform Quantizations.

1.5 Quantization 57

Codebook

0
Image
1
2 | '
.
Best match

4 Two-Dimensional Regions

Figure 1.19: Vector Quantization Example.

all the points in a region are closer to the region’s center point than to any other center
point. Every point in the region is then transformed or projected to the center point.

Voronoi Regions

Imagine a Petri dish ready for growing bacteria. Four bacteria of different types
are simultaneously placed in it at different points and immediately start multiplying.
We assume that their colonies grow at the same rate. Initially, each colony consists
of a growing circle around one of the starting points. After a while, the circles meet
and stop growing in the meeting area due to lack of food. The final result is that the
entire dish is divided into four areas, one around each of the four starting points, such
that all the points within area i are closer to starting point ¢ than to any other start
point. Such areas are called Voronoi regions or Dirichlet Tessellations.

Q)@@@ @%@ ~CT

In practice, each vector has N components, so vector quantization becomes the
problem of partitioning n-dimensional space into regions and determining a center point
for each region. Once this is done, quantization amounts to replacing all the points in a
region with the center point.

How is the codebook constructed? This problem is somewhat similar to the problem
of determining the distribution of data symbols in a given file (page 26) and can be
approached in three ways as follows:

» A two-pass job, where the first pass analyzes the data to be compressed and con-
structs the best codebook for that data and the second pass performs the actual com-
pression. In addition to being slow, this approach requires writing the entire codebook
on the compressed file.

= A static codebook that is determined once and for all by means of a set of training
documents. The codebook is built into both encoder and decoder, so it doesn’t have to
be written on the compressed file. Obviously, the performance of this approach depends
on how much the data resembles the training documents.

58 1. Approaches to Compression

s An adaptive algorithm, where the codebook starts empty and is modified each time
new data is input and compressed. Such a method has to be designed carefully to make
sure that the decoder can modify the codebook in lockstep with the encoder.

The first two approaches are similar. Both require an algorithm that constructs the
best codebook for a given data file (either the data to be compressed or the training doc-
uments). An example of such a method is the Linde, Buzo, and Gray (LBG) algorithm
[Linde et al. 80]. This algorithm, as well as a method for adaptive vector quantization,
are described in [Salomon 07].

Chapter Summary

This chapter introduces the important approaches to data compression. The Prelude
discusses variable-length codes, run-length encoding (RLE), the use of dictionaries, the
concept of a transform, and the techniques of scalar and vector quantization. Following
the Prelude, each approach is described in more detail in a separate section. Here is a
short summary of the main concepts involved.

Variable-length codes are a natural choice for simple, effective compression of various
types of data. Most types of data (such as text characters, pixels, and audio samples)
are encoded with a fixed-length code because this makes it convenient to input, process,
and save the individual data symbols. Replacing fixed-length codes with variable-length
codes can lead to compression because of the following: (1) Often, certain symbols are
more common than others, so replacing them with short codes can greatly save on the
total number of bits needed. (2) Data symbols such as pixels and audio samples are
correlated. Subtracting adjacent symbols results in differences (or residuals), most of
which are small integers and thus can be replaced by short codes.

Run-length encoding is used to compress strings of identical symbols. In principle,
a string of n occurrences of symbol S can be replaced by a repetition factor n followed
by a single S. RLE is especially useful in combination with quantization, because the
latter may often quantize many symbols to zero and thus generate long strings of zeros.

Dictionary-based compression methods exploit the fact that a typical data file is
not random; it features patterns and repetitions. At any point during compression, the
input file is divided into two parts, data that has been compressed (this is kept in a
data structure called the dictionary) and data that still has to be input and compressed.
Assume that the latter part starts with the string of symbols abcd.... The encoder
searches the dictionary for this string, and locates the longest match. The string is
then compressed by replacing it with a pointer to its match in the dictionary. The
difference between the various dictionary methods is in how they organize and search
the dictionary and how they deal with strings not found in the dictionary.

A transform is a mathematical operation that changes the representation of a data
item. Thus, changing the decimal number 12,345 to the binary 11000000111001 is a
transform. Correlated data symbols such as the pixels of an image or the audio samples
of a sound file, can be transformed to representations where they require fewer bits.
This sounds like getting something for nothing, but in fact there is a price to pay. The
transformed items (transform coefficients) are decorrelated. Such a transform already
achieves some degree of compression, but more can be obtained if lossy compression is

Chapter Summary 59

an option. The transform coefficients can be quantized, a process that results in small
integers (which can be encoded with variable-length codes) and possibly also in runs of
zeros (which can be compressed with RLE).

Quantization is the operation of cutting up a number. A real number, for example,
can be quantized by converting it to the nearest integer (or the nearest smaller integer).
Heavier quantization may convert all the numbers in an interval [a, b] to the integer at
the center of the interval. For example, given an input file where the data symbols are
8-bit integers (bytes) we can compress each symbol to four bits as follows. A byte is
an integer in the interval [0,255]. We divide this interval to 16 subintervals of width 16
each, and quantize each integer in a subinterval to the integer in the middle (or closest
to the middle) of the interval. This is referred to as scalar quantization and is very
inefficient. The compression factor is only 2, and the quantization simply discards half
the original bits of each data symbol, which may be too much data to lose.

A more efficient form of quantization is the so-called vector quantization, where
an array of data symbols is replaced by the index of another array. The replacement
arrays are the components of a codebook of arrays and are selected such that (1) for
each data array v; there is a replacement array V; in the codebook such that v; and V;
are sufficiently close and (2) the codebook size (the number of replacement arrays) is
small enough, such that replacing v; by the index j result in significant savings of bits.

Self- Assessment Questions

1. Most variable-length codes used in practical compression algorithms are prefix
codes, but there are other ways to design UD codes. Consider the following idea for
a “taboo” code. The user selects a positive integer n and decides on an n-bit taboo
pattern. Each codeword is constructed as a string of n-bit blocks where the last block
is the taboo pattern and no other block can have this pattern. Select n = 3 and a 3-bit
taboo pattern, and then write several taboo codewords with 3, 4, and 5 blocks. Find
out how the number of possible values of a b-block codeword depends on b.

2. Section 1.2 mentions mixing run lengths and raw items. Here is the relevant
paragraph:

“If the run is short, such a pair may be longer than the run of symbols, thereby
leading to expansion. A reasonable solution is to write such short runs on the output in
raw format, so at least they do not cause expansion. However, this raises the question
of distinguishing between pairs and raw items, because in the output file both types are
binary strings. A practical RLE program must therefore precede each pair and each raw
item with a 1-bit indicator. Thus, a pair becomes the triplet (0, length, symbol) and a
raw item becomes the pair (1, symbol).”

Prepare a data file with many run lengths and write a program that identifies each
run and compresses it either as a triplet (0, length, symbol) or as a pair (1, symbol)
depending on its length (if the run is long enough to benefit from RLE, it should be
converted into a triplet).

3. The last paragraph of Section 1.3.1 mentions several ways to improve the basic
LZ77 method. One such technique has to do with a circular queue. Study this interesting
data structure in books on data structures and implement a simple version of a circular
queue.

60 1. Approaches to Compression

4. The matrix of Equation (5.1) is a rotation matrix in two dimensions. Use books
on geometric transformations to understand rotations in higher dimensions.
5. Prepare an example of vector quantization similar to that of Figure 1.19.

The best angle from which to approach any problem is the try-angle.

—Unknown

e (= D

2
Huffman Coding

Y 13 Prelude A

Huffman coding is a popular method for compressing data with variable-length codes.
Given a set of data symbols (an alphabet) and their frequencies of occurrence (or, equiv-
alently, their probabilities), the method constructs a set of variable-length codewords
with the shortest average length and assigns them to the symbols. Huffman coding
serves as the basis for several applications implemented on popular platforms. Some
programs use just the Huffman method, while others use it as one step in a multistep
compression process. The Huffman method [Huffman 52] is somewhat similar to the
Shannon—Fano method, proposed independently by Claude Shannon and Robert Fano
in the late 1940s ([Shannon 48] and [Fano 49]). It generally produces better codes, and
like the Shannon-Fano method, it produces the best variable-length codes when the
probabilities of the symbols are negative powers of 2. The main difference between the
two methods is that Shannon—Fano constructs its codes from top to bottom (and the
bits of each codeword are constructed from left to right), while Huffman constructs a
code tree from the bottom up (and the bits of each codeword are constructed from right
to left).

Since its inception in 1952 by D. Huffman, the method has been the subject of
intensive research in data compression. The long discussion in [Gilbert and Moore 59]
proves that the Huffman code is a minimum-length code in the sense that no other
encoding has a shorter average length. A much shorter proof of the same fact was
discovered by Huffman himself [Motil 07]. An algebraic approach to constructing the
Huffman code is introduced in [Karp 61]. In [Gallager 78], Robert Gallager shows that
the redundancy of Huffman coding is at most p; + 0.086 where p; is the probability of
the most-common symbol in the alphabet. The redundancy is the difference between
the average Huffman codeword length and the entropy. Given a large alphabet, such

62 2. Huffman Coding

as the set of letters, digits and punctuation marks used by a natural language, the
largest symbol probability is typically around 15-20%, bringing the value of the quantity
p1 + 0.086 to around 0.1. This means that Huffman codes are at most 0.1 bit longer
(per symbol) than an ideal entropy encoder, such as arithmetic coding (Chapter 4).

This chapter describes the details of Huffman encoding and decoding and covers
related topics such as the height of a Huffman code tree, canonical Huffman codes, and
an adaptive Huffman algorithm. Following this, Section 2.4 illustrates an important
application of the Huffman method to facsimile compression.

David Huffman (1925-1999)

Being originally from Ohio, it is no wonder that Huffman went to Ohio State Uni-
versity for his BS (in electrical engineering). What is unusual was
his age (18) when he earned it in 1944. After serving in the United
States Navy, he went back to Ohio State for an MS degree (1949)
and then to MIT, for a PhD (1953, electrical engineering).

That same year, Huffman joined the faculty at MIT. In 1967,
he made his only career move when he went to the University of
California, Santa Cruz as the founding faculty member of the Com-
puter Science Department. During his long tenure at UCSC, Huff-
man played a major role in the development of the department (he
served as chair from 1970 to 1973) and he is known for his motto
“my products are my students.” Even after his retirement, in 1994, he remained active
in the department, teaching information theory and signal analysis courses.

Huffman developed his celebrated algorithm as a term paper that he wrote in lieu
of taking a final examination in an information theory class he took at MIT in 1951.
The professor, Robert Fano, proposed the problem of constructing the shortest variable-
length code for a set of symbols with known probabilities of occurrence.

It should be noted that in the late 1940s, Fano himself (and independently, also
Claude Shannon) had developed a similar, but suboptimal, algorithm known today as
the Shannon-Fano method ([Shannon 48] and [Fano 49]). The difference between the
two algorithms is that the Shannon—Fano code tree is built from the top down, while
the Huffman code tree is constructed from the bottom up.

Huffman made significant contributions in several areas, mostly information theory
and coding, signal designs for radar and communications, and design procedures for
asynchronous logical circuits. Of special interest is the well-known Huffman algorithm
for constructing a set of optimal prefix codes for data with known frequencies of occur-
rence. At a certain point he became interested in the mathematical properties of “zero
curvature” surfaces, and developed this interest into techniques for folding paper into
unusual sculptured shapes (the so-called computational origami).

2.1 Huffman Encoding 63

2.1 Huffman Encoding

The Huffman encoding algorithm starts by constructing a list of all the alphabet symbols
in descending order of their probabilities. It then constructs, from the bottom up, a
binary tree with a symbol at every leaf. This is done in steps, where at each step two
symbols with the smallest probabilities are selected, added to the top of the partial tree,
deleted from the list, and replaced with an auxiliary symbol representing the two original
symbols. When the list is reduced to just one auxiliary symbol (representing the entire
alphabet), the tree is complete. The tree is then traversed to determine the codewords
of the symbols.

This process is best illustrated by an example. Given five symbols with probabilities
as shown in Figure 2.1a, they are paired in the following order:

1. a4 is combined with as and both are replaced by the combined symbol a45, whose
probability is 0.2.

2. There are now four symbols left, a1, with probability 0.4, and a9, as, and ays, with
probabilities 0.2 each. We arbitrarily select as and a45 as the two symbols with smallest
probabilities, combine them, and replace them with the auxiliary symbol as45, whose
probability is 0.4.

3. Three symbols are now left, a1, as, and as4s, with probabilities 0.4, 0.2, and 0.4,
respectively. We arbitrarily select as and asy4s, combine them, and replace them with
the auxiliary symbol as345, whose probability is 0.6.

4. Finally, we combine the two remaining symbols, a; and as345, and replace them with
a12345 With probability 1.

The tree is now complete. It is shown in Figure 2.1a “lying on its side” with its
root on the right and its five leaves on the left. To assign the codewords, we arbitrarily
assign a bit of 1 to the top edge, and a bit of 0 to the bottom edge, of every pair of
edges. This results in the codewords 0, 10, 111, 1101, and 1100. The assignments of bits
to the edges is arbitrary.

The average size of this codeis 0.4 x14+02x2402x34+0.1x4+4+0.1 x4=2.2
bits/symbol, but even more importantly, the Huffman code is not unique. Some of the
steps above were chosen arbitrarily, because there were more than two symbols with
smallest probabilities. Figure 2.1b shows how the same five symbols can be combined
differently to obtain a different Huffman code (11, 01, 00, 101, and 100). The average
size of this code is 0.4 x 2+ 0.2 x 24 0.2 x 2+ 0.1 x 34 0.1 x 3 = 2.2 bits/symbol, the
same as the previous code.

Exercise 2.1: Given the eight symbols A, B, C, D, E, F, G, and H with probabilities
1/30, 1/30, 1/30, 2/30, 3/30, 5/30, 5/30, and 12/30, draw three different Huffman trees
with heights 5 and 6 for these symbols and compute the average code size for each tree.

Exercise 2.2: Figure Ans.1d shows another Huffman tree, with height 4, for the eight
symbols introduced in Exercise 2.1. Explain why this tree is wrong.

It turns out that the arbitrary decisions made in constructing the Huffman tree
affect the individual codes but not the average size of the code. Still, we have to answer
the obvious question, which of the different Huffman codes for a given set of symbols
is best? The answer, while not obvious, is simple: The best code is the one with the

64 2. Huffman Coding

0 10
ai ar 0.4 0.6
0.4 12345 1 a145 ¢
1 1
a2345 }Jl 1 0 Y
a2 0.2 o 06 az 0.2 0 1.0
a23 ¢— |~
1
as 0.2 —— az 0.2 —
azas e .
as 0.1 —1 o as 0.1
a 0.2
45 955 45
as 0.1 —; as 0.1 —5

(a) (b)

Figure 2.1: Huffman Codes.

smallest variance. The variance of a code measures how much the sizes of the individual
codewords deviate from the average size. The variance of the code of Figure 2.1a is

0.4(1 —2.2)2 +0.2(2 — 2.2)* + 0.2(3 — 2.2)* +- 0.1(4 — 2.2)? +-0.1(4 — 2.2)* = 1.36,
while the variance of code 2.1b is
0.4(2 —2.2)2 +0.2(2 — 2.2)? + 0.2(2 — 2.2)% + 0.1(3 — 2.2)* 4+ 0.1(3 — 2.2)% = 0.16.

Code 2.1b is therefore preferable (see below). A careful look at the two trees shows how
to select the one we want. In the tree of Figure 2.1a, symbol a45 is combined with ag,
whereas in the tree of 2.1b a45 is combined with a;. The rule is: When there are more
than two smallest-probability nodes, select the ones that are lowest and highest in the
tree and combine them. This will combine symbols of low probability with symbols of
high probability, thereby reducing the total variance of the code.

If the encoder simply writes the compressed data on a file, the variance of the code
makes no difference. A small-variance Huffman code is preferable only in cases where
the encoder transmits the compressed data, as it is being generated, over a network. In
such a case, a code with large variance causes the encoder to generate bits at a rate that
varies all the time. Since the bits have to be transmitted at a constant rate, the encoder
has to use a buffer. Bits of the compressed data are entered into the buffer as they are
being generated and are moved out of it at a constant rate, to be transmitted. It is easy
to see intuitively that a Huffman code with zero variance will enter bits into the buffer
at a constant rate, so only a short buffer will be needed. The larger the code variance,
the more variable is the rate at which bits enter the buffer, requiring the encoder to use
a larger buffer.

The following claim is sometimes found in the literature:

It can be shown that the size of the Huffman code of a symbol
a; with probability P; is always less than or equal to [—log, P;].

2.1 Huffman Encoding 65

Even though it is correct in many cases, this claim is not true in general. It seems
to be a wrong corollary drawn by some authors from the Kraft-McMillan inequality,
Equation (1.4). The author is indebted to Guy Blelloch for pointing this out and also
for the example of Table 2.2.

P, Code —logy,P; [—logyP;]

.01 000 6.644 7
*.30 001 1.737 2
.34 01 1.556 2
.35 1 1.515 2

Table 2.2: A Huffman Code Example.

Exercise 2.3: Find an example where the size of the Huffman code of a symbol a; is
greater than [—log, P;].

Exercise 2.4: It seems that the size of a code must also depend on the number n of
symbols (the size of the alphabet). A small alphabet requires just a few codes, so they
can all be short; a large alphabet requires many codes, so some must be long. This being
so, how can we say that the size of the code of a; depends just on the probability P;?

Figure 2.3 shows a Huffman code for the 26 letters.
As a self-exercise, the reader may calculate the average size, entropy, and variance
of this code.

Exercise 2.5: Discuss the Huffman codes for equal probabilities.

Exercise 2.5 shows that symbols with equal probabilities don’t compress under the
Huffman method. This is understandable, since strings of such symbols normally make
random text, and random text does not compress. There may be special cases where
strings of symbols with equal probabilities are not random and can be compressed. A
good example is the string aia;...ajasas...asaza3 ... in which each symbol appears
in a long run. This string can be compressed with RLE but not with Huffman codes.

Notice that the Huffman method cannot be applied to a two-symbol alphabet. In
such an alphabet, one symbol can be assigned the code 0 and the other code 1. The
Huffman method cannot assign to any symbol a code shorter than one bit, so it cannot
improve on this simple code. If the original data (the source) consists of individual
bits, such as in the case of a bi-level (monochromatic) image, it is possible to combine
several bits (perhaps four or eight) into a new symbol and pretend that the alphabet
consists of these (16 or 256) symbols. The problem with this approach is that the original
binary data may have certain statistical correlations between the bits, and some of these
correlations would be lost when the bits are combined into symbols. When a typical
bi-level image (a painting or a diagram) is digitized by scan lines, a pixel is more likely to
be followed by an identical pixel than by the opposite one. We therefore have a file that
can start with either a 0 or a 1 (each has 0.5 probability of being the first bit). A zero is
more likely to be followed by another 0 and a 1 by another 1. Figure 2.4 is a finite-state
machine illustrating this situation. If these bits are combined into, say, groups of eight,

66 2. Huffman Coding

000E .1300 — ¢
0010 T .0900 30
0011 A 0800 1
0100 O .0800 —
0101 N .0700
0110 R .0650 93
0111 T.0650

10000 H .0600
10001 S .0600 _
10010 D .0400 1 195 | g

10011 L .0350 1
10100 C .0300 gy — 305 | ¢
10101 U .0300 1

10110 M .0300 11
10111 F .0200 _

11000 P .0200

11001 Y .0200 I 420
11010 B .0150 070 |
11011 W .0150 1

11100 G .0150 115
11101 V .0100 j 025 1

111100 J .0050

.580

111101 K .0050 010 045
111110 X .0050 ——— .020
1111110 Q .0025
010
1111111 Z .0025 :%

Figure 2.3: A Huffman Code for the 26-Letter Alphabet.

the bits inside a group will still be correlated, but the groups themselves will not be
correlated by the original pixel probabilities. If the input data contains, e.g., the two
adjacent groups 00011100 and 00001110, they will be encoded independently, ignoring
the correlation between the last 0 of the first group and the first 0 of the next group.
Selecting larger groups improves this situation but increases the number of groups, which
implies more storage for the code table and longer time to calculate the table.

Exercise 2.6: How does the number of groups increase when the group size increases
from s bits to s + n bits?

A more complex approach to image compression by Huffman coding is to create
several complete sets of Huffman codes. If the group size is, e.g., eight bits, then several
sets of 256 codes are generated. When a symbol S is to be encoded, one of the sets is
selected, and S is encoded using its code in that set. The choice of set depends on the
symbol preceding S.

2.2 Huffman Decoding 67

Start

0,50% 1,50%

1,33%

0,67% ln 0,40% Iﬂ 1,60%

Figure 2.4: A Finite-State Machine.

o Exercise 2.7: Imagine an image with 8-bit pixels where half the pixels have values 127
and the other half have values 128. Analyze the performance of RLE on the individual
bitplanes of such an image, and compare it with what can be achieved with Huffman
coding.

*Which two integers come next in the infinite sequence 38, 24, 62, 12, 74, ...7

2.2 Huffman Decoding

Before starting the compression of a data file, the compressor (encoder) has to determine
the codes. It does that based on the probabilities (or frequencies of occurrence) of the
symbols. The probabilities or frequencies have to be written, as side information, on
the output, so that any Huffman decompressor (decoder) will be able to decompress
the data. This is easy, because the frequencies are integers and the probabilities can
be written as scaled integers. It normally adds just a few hundred bytes to the output.
It is also possible to write the variable-length codes themselves on the output, but this
may be awkward, because the codes have different sizes. It is also possible to write the
Huffman tree on the output, but this may require more space than just the frequencies.

In any case, the decoder must know what is at the start of the compressed file,
read it, and construct the Huffman tree for the alphabet. Only then can it read and
decode the rest of its input. The algorithm for decoding is simple. Start at the root
and read the first bit off the input (the compressed file). If it is zero, follow the bottom
edge of the tree; if it is one, follow the top edge. Read the next bit and move another
edge toward the leaves of the tree. When the decoder arrives at a leaf, it finds there the
original, uncompressed symbol (normally its ASCII code), and that code is emitted by
the decoder. The process starts again at the root with the next bit.

This process is illustrated for the five-symbol alphabet of Figure 2.5. The four-
symbol input string aqasasa; is encoded into 1001100111. The decoder starts at the
root, reads the first bit 1, and goes up. The second bit 0 sends it down, as does the
third bit. This brings the decoder to leaf a4, which it emits. It again returns to the
root, reads 110, moves up, up, and down, to reach leaf as, and so on.

68 2. Huffman Coding

17

e 1

3 — 014
4 0
5

Figure 2.5: Huffman Codes for Equal Probabilities.

2.2.1 Fast Huffman Decoding

Decoding a Huffman-compressed file by sliding down the code tree for each symbol is
conceptually simple, but slow. The compressed file has to be read bit by bit and the
decoder has to advance a node in the code tree for each bit. The method of this section,
originally conceived by [Choueka et al. 85] but later reinvented by others, uses preset
partial-decoding tables. These tables depend on the particular Huffman code used, but
not on the data to be decoded. The compressed file is read in chunks of k bits each
(where k is normally 8 or 16 but can have other values) and the current chunk is used
as a pointer to a table. The table entry that is selected in this way can decode several
symbols and it also points the decoder to the table to be used for the next chunk.

As an example, consider the Huffman code of Figure 2.1a, where the five codewords
are 0, 10, 111, 1101, and 1100. The string of symbols ajajasasasajas ... is compressed
by this code to the string 0]0/10/1101|111]0]1100.... We select k& = 3 and read this string
in 3-bit chunks 001|011|011|110|110]0.... Examining the first chunk, it is easy to see
that it should be decoded into aia; followed by the single bit 1 which is the prefix of
another codeword. The first chunk is 001 = 149, so we set entry 1 of the first table (table
0) to the pair (aja, 1). When chunk 001 is used as a pointer to table 0, it points to entry
1, which immediately provides the decoder with the two decoded symbols a;a; and also
directs it to use table 1 for the next chunk. Table 1 is used when a partially-decoded
chunk ends with the single-bit prefix 1. The next chunk is 011 = 31¢, so entry 3 of
table 1 corresponds to the encoded bits 1|011. Again, it is easy to see that these should
be decoded to as and there is the prefix 11 left over. Thus, entry 3 of table 1 should be
(az2,2). It provides the decoder with the single symbol as and also directs it to use table 2
next (the table that corresponds to prefix 11). The next chunk is again 011 = 34, so
entry 3 of table 2 corresponds to the encoded bits 11|011. It is again obvious that these
should be decoded to a4 with a prefix of 1 left over. This process continues until the
end of the encoded input. Figure 2.6 is the simple decoding algorithm in pseudocode.

Table 2.7 lists the four tables required to decode this code. It is easy to see that
they correspond to the prefixes A (null), 1, 11, and 110. A quick glance at Figure 2.1a
shows that these correspond to the root and the four interior nodes of the Huffman code
tree. Thus, each partial-decoding table corresponds to one of the four prefixes of this
code. The number m of partial-decoding tables therefore equals the number of interior
nodes (plus the root) which is one less than the number N of symbols of the alphabet.

2.2 Huffman Decoding 69

i+-0; output«—null;
repeat
j<—input next chunk;
(s,i)«Table;[j];
append s to output;
until end-of-input

Figure 2.6: Fast Huffman Decoding.

Ty = A T, =1 T, =11 Ty = 110
000 ajai1ay 0 1|000 207101 0 11|000 asay 0 110|000 asa10a1 0
001 aja; 1 | 1j001 aza; 1 | 11]001 as 1 | 110/001 asa; 1
010 ajaz 0 | 1/010 agas O | 11/010 a4a; O 110/010 asas O
011 ay 2 11011 aq 2 111011 aq 1 110|011 a5 2
100 a2a1 0 1|100 as 0 11|100 asajag 0 110|100 aqa1a1 0
101 aq 1 11101 ay 0 | 11/101 aga; 1 110/101 a4ay 1
110 — 3 | 1]110 aza; 0 | 11]110 azas O 110|110 a4as O
111 as 0 | 1111 as 1| 11111 as 2 | 110[111 ay 2

Table 2.7: Partial-Decoding Tables for a Huffman Code.

Notice that some chunks (such as entry 110 of table 0) simply send the decoder
to another table and do not provide any decoded symbols. Also, there is a trade-off
between chunk size (and thus table size) and decoding speed. Large chunks speed up
decoding, but require large tables. A large alphabet (such as the 128 ASCII characters
or the 256 8-bit bytes) also requires a large set of tables. The problem with large tables
is that the decoder has to set up the tables after it has read the Huffman codes from the
compressed stream and before decoding can start, and this process may preempt any
gains in decoding speed provided by the tables.

To set up the first table (table 0, which corresponds to the null prefix A), the
decoder generates the 2% bit patterns 0 through 2% — 1 (the first column of Table 2.7)
and employs the decoding method of Section 2.2 to decode each pattern. This yields
the second column of Table 2.7. Any remainders left are prefixes and are converted
by the decoder to table numbers. They become the third column of the table. If no
remainder is left, the third column is set to 0 (use table 0 for the next chunk). Each of
the other partial-decoding tables is set in a similar way. Once the decoder decides that
table 1 corresponds to prefix p, it generates the 2* patterns p|00...0 through p|11...1
that become the first column of that table. It then decodes that column to generate the
remaining two columns.

This method was conceived in 1985, when storage costs were considerably higher
than today (early 2007). This prompted the developers of the method to find ways to
cut down the number of partial-decoding tables, but these techniques are less important
today and are not described here.

e —
— —

70 2. Huffman Coding

2.2.2 Average Code Size

Figure 2.8a shows a set of five symbols with their probabilities and a typical Huffman
tree. Symbol A appears 55% of the time and is assigned a 1-bit code, so it contributes
0.55-1 bits to the average code size. Symbol E appears only 2% of the time and is
assigned a 4-bit Huffman code, so it contributes 0.02-4 = 0.08 bits to the code size. The
average code size is therefore easily computed as

0.55-140.25-240.15-340.03 -4+ 0.02 - 4 = 1.7 bits per symbol.

Surprisingly, the same result is obtained by adding the values of the four internal nodes
of the Huffman code tree 0.05 4 0.2 + 0.45 + 1 = 1.7. This provides a way to calculate
the average code size of a set of Huffman codes without any multiplications. Simply add
the values of all the internal nodes of the tree. Table 2.9 illustrates why this works.

A 0.55
1
B 0.25
0.45
C0.15
0.2
D 0.03
] 0.05
E 0.02
(a)
- d -

(N
. J

(b)

Figure 2.8: Huffman Code Trees.

(Internal nodes are shown in italics in this table.) The left column consists of the values
of all the internal nodes. The right columns show how each internal node is the sum of

2.2 Huffman Decoding 71

0.05 = =0.0240.03 4+ ---
ap =0.05+...=0024+0.03+---

05 = .02+ .03)

20 =.05+ .15 =.024 .03+ .15 : =

45 =.204 .25 =.02+ .03+ .15+ .25 ag—2 =aq4—3+ ...=0.02+0.03+---
1.0 = .45+ .55 =.024+ .03+ .15+ .25+ .55 1.0 =ag_2+...=0.0240.03+---
Table 2.9: Composition of Nodes. Table 2.10: Composition of Nodes.

some of the leaf nodes. Summing the values in the left column yields 1.7, and summing
the other columns shows that this 1.7 is the sum of the four values 0.02, the four values
0.03, the three values 0.15, the two values 0.25, and the single value 0.55.

This argument can be extended to the general case. It is easy to show that, in a
Huffman-like tree (a tree where each node is the sum of its children), the weighted sum
of the leaves, where the weights are the distances of the leaves from the root, equals
the sum of the internal nodes. (This property has been communicated to the author by
J. Motil.)

Figure 2.8b shows such a tree, where we assume that the two leaves 0.02 and 0.03
have d-bit Huffman codes. Inside the tree, these leaves become the children of internal
node 0.05, which, in turn, is connected to the root by means of the d — 2 internal nodes
a1 through agy_o. Table 2.10 has d rows and shows that the two values 0.02 and 0.03
are included in the various internal nodes exactly d times. Adding the values of all the
internal nodes produces a sum that includes the contributions 0.02 - d + 0.03 - d from
the two leaves. Since these leaves are arbitrary, it is clear that this sum includes similar
contributions from all the other leaves, so this sum is the average code size. Since this
sum also equals the sum of the left column, which is the sum of the internal nodes, it is
clear that the sum of the internal nodes equals the average code size.

Notice that this proof does not assume that the tree is binary. The property illus-
trated here exists for any tree where a node contains the sum of its children.

2.2.3 Number of Codes

Since the Huffman code is not unique, the natural question is: How many different codes
are there? Figure 2.11a shows a Huffman code tree for six symbols, from which we can
answer this question in two different ways as follows:

Answer 1. The tree of 2.11a has five interior nodes, and in general, a Huffman code
tree for n symbols has n — 1 interior nodes. Each interior node has two edges coming
out of it, labeled 0 and 1. Swapping the two labels produces a different Huffman code
tree, so the total number of different Huffman code trees is 2"~! (in our example, 2° or
32). The tree of Figure 2.11b, for example, shows the result of swapping the labels of
the two edges of the root. Table 2.12a,b lists the codes generated by the two trees.

Answer 2. The six codes of Table 2.12a can be divided into the four classes 00z,
10y, 01, and 11, where = and y are 1-bit each. It is possible to create different Huffman
codes by changing the first two bits of each class. Since there are four classes, this is
the same as creating all the permutations of four objects, something that can be done
in 4! = 24 ways. In each of the 24 permutations it is also possible to change the values

72 2. Huffman Coding

0 0
1 11— ¢ 1 .11 — ¢
1 1
2 12 —- 2 .12 —
0 0 0 1
3 .13 T 0 3 .13 T 0 000 100 000
i - — il > — 001 101 001
o o 100 000 010
5 .24 1 5 .24 0 101 001 011
1 1 01 11 10
6 .26 6 .26 11 01 11
(a) (b) (a) (b) (c)
Figure 2.11: Two Huffman Code Trees. Table 2.12.

of x and y in four different ways (since they are bits) so the total number of different
Huffman codes in our six-symbol example is 24 x 4 = 96.

The two answers are different because they count different things. Answer 1 counts
the number of different Huffman code trees, while answer 2 counts the number of different
Huffman codes. It turns out that our example can generate 32 different code trees but
only 94 different codes instead of 96. This shows that there are Huffman codes that
cannot be generated by the Huffman method! Table 2.12c shows such an example. A
look at the trees of Figure 2.11 should convince the reader that the codes of symbols 5
and 6 must start with different bits, but in the code of Table 2.12c they both start with
1. This code is therefore impossible to generate by any relabeling of the nodes of the
trees of Figure 2.11.

2.2.4 Ternary Huffman Codes

The Huffman code is not unique. Moreover, it does not have to be binary! The Huffman
method can easily be applied to codes based on other number systems. Figure 2.13a
shows a Huffman code tree for five symbols with probabilities 0.15, 0.15, 0.2, 0.25, and
0.25. The average code size is

2x0.25 4+ 3x%0.15 + 3x0.15 + 2x0.20 4+ 2% 0.25 = 2.3 bits/symbol.

Figure 2.13b shows a ternary Huffman code tree for the same five symbols. The tree
is constructed by selecting, at each step, three symbols with the smallest probabilities
and merging them into one parent symbol, with the combined probability. The average
code size of this tree is

2%x0.154+2x0.15 + 2x0.20 + 1x0.25 + 1x0.25 = 1.5 trits/symbol.

Notice that the ternary codes use the digits 0, 1, and 2.

Exercise 2.8: Given seven symbols with probabilities 0.02, 0.03, 0.04, 0.04, 0.12, 0.26,
and 0.49, construct binary and ternary Huffman code trees for them and calculate the
average code size in each case.

2.2 Huffman Decoding 73

1.0
1.0

A /l\

25 30 15 /'70\'25 25
15 15 20 .95 15 15 .20

N

.49

26 1.0

1.0
51
/\
2 .25
N I
13 12 . .

05 08 .09 04 12
02 03 04 .04 02 03 04
(c) ()

Figure 2.13: Binary and Ternary Huffman Code Trees.

2.2.5 Height of a Huffman Tree

The height of the code tree generated by the Huffman algorithm may sometimes be
important because the height is also the length of the longest code in the tree. The
Deflate method (Section 3.3), for example, limits the lengths of certain Huffman codes
to just three bits.

It is easy to see that the shortest Huffman tree is created when the symbols have
equal probabilities. If the symbols are denoted by A, B, C, and so on, then the algorithm
combines pairs of symbols, such A and B, C and D, in the lowest level, and the rest of the
tree consists of interior nodes as shown in Figure 2.14a. The tree is balanced or close
to balanced and its height is [log, n]. In the special case where the number of symbols
n is a power of 2, the height is exactly logy n. In order to generate the tallest tree, we

74 2. Huffman Coding

need to assign probabilities to the symbols such that each step in the Huffman method
will increase the height of the tree by 1. Recall that each step in the Huffman algorithm
combines two symbols. Thus, the tallest tree is obtained when the first step combines
two of the n symbols and each subsequent step combines the result of its predecessor
with one of the remaining symbols (Figure 2.14b). The height of the complete tree is
therefore n — 1, and it is referred to as a lopsided or unbalanced tree.

It is easy to see what symbol probabilities result in such a tree. Denote the two
smallest probabilities by a and b. They are combined in the first step to form a node
whose probability is a + b. The second step will combine this node with an original
symbol if one of the symbols has probability a + b (or smaller) and all the remaining
symbols have greater probabilities. Thus, after the second step, the root of the tree
has probability a + b + (a + b) and the third step will combine this root with one of
the remaining symbols if its probability is @ + b+ (a + b) and the probabilities of the
remaining n — 4 symbols are greater. It does not take much to realize that the symbols
have to have probabilities p1 = a, po = b, ps = a+b = p1 +pa, ps = b+ (a+b) = pa+ps,
ps = (@ +b) + (a+ 2b) = p3 + pa, ps = (a + 2b) + (2a + 3b) = ps + ps, and so on
(Figure 2.14¢). These probabilities form a Fibonacci sequence whose first two elements
are a and b. As an example, we select a = 5 and b = 2 and generate the 5-number
Fibonacci sequence 5, 2, 7, 9, and 16. These five numbers add up to 39, so dividing
them by 39 produces the five probabilities 5/39, 2/39, 7/39, 9/39, and 15/39. The
Huffman tree generated by them has a maximal height (which is 4).

N
/\ /\ HOAA a@\
ONONON DN O N

000 001 010 011 100 101 110 111 11110 11111 a b

(2) (b) ()

Figure 2.14: Shortest and Tallest Huffman Trees.

In principle, symbols in a set can have any probabilities, but in practice, the proba-
bilities of symbols in an input file are computed by counting the number of occurrences
of each symbol. Imagine a text file where only the nine symbols A through I appear.
In order for such a file to produce the tallest Huffman tree, where the codes will have
lengths from 1 to 8 bits, the frequencies of occurrence of the nine symbols have to form a
Fibonacci sequence of probabilities. This happens when the frequencies of the symbols
are 1, 1, 2, 3, 5, 8, 13, 21, and 34 (or integer multiples of these). The sum of these
frequencies is 88, so our file has to be at least that long in order for a symbol to have
8-bit Huffman codes. Similarly, if we want to limit the sizes of the Huffman codes of a
set of n symbols to 16 bits, we need to count frequencies of at least 4,180 symbols. To
limit the code sizes to 32 bits, the minimum data size is 9,227,464 symbols.

2.2 Huffman Decoding 75

If a set of symbols happens to have the Fibonacci probabilities and therefore results
in a maximal-height Huffman tree with codes that are too long, the tree can be reshaped
(and the maximum code length shortened) by slightly modifying the symbol probabil-
ities, so they are not much different from the original, but do not form a Fibonacci
sequence.

2.2.6 Canonical Huffman Codes

The code of Table 2.12c has a simple interpretation. It assigns the first four symbols the
3-bit codes 0, 1, 2, and 3, and the last two symbols the 2-bit codes 2 and 3. This is an
example of a canonical Huffman code. The word “canonical” means that this particular
code has been selected from among the several (or even many) possible Huffman codes
because its properties make it easy and fast to use.

Canonical (adjective): Conforming to orthodox or well-established rules or patterns,
as of procedure.

Table 2.15 shows a slightly bigger example of a canonical Huffman code. Imagine
a set of 16 symbols (whose probabilities are irrelevant and are not shown) such that
four symbols are assigned 3-bit codes, five symbols are assigned 5-bit codes, and the
remaining seven symbols are assigned 6-bit codes. Table 2.15a shows a set of possible
Huffman codes, while Table 2.15b shows a set of canonical Huffman codes. It is easy to
see that the seven 6-bit canonical codes are simply the 6-bit integers 0 through 6. The
five codes are the 5-bit integers 4 through 8, and the four codes are the 3-bit integers 3
through 6. We first show how these codes are generated and then how they are used.

1. 000 011 9: 10100 01000

2: 001 100 10: 101010 000000

3: 010 101 11: 101011 000001

4: 011 110 12: 101100 000010

5: 10000 00100 13: 101101 000011

6: 10001 00101 14: 101110 000100

7: 10010 00110 15: 101111 000101 length: 1 2 3 4 5 6

8: 10011 00111 16: 110000 000110 numl: 0040657
(a) (b) (a) (b) first: 243540

Table 2.15. Table 2.16.

The top row (length) of Table 2.16 lists the possible code lengths, from 1 to 6 bits.
The second row (numl) lists the number of codes of each length, and the bottom row
(first) lists the first code in each group. This is why the three groups of codes start with
values 3, 4, and 0. To obtain the top two rows we need to compute the lengths of all
the Huffman codes for the given alphabet (see below). The third row is computed by
setting “first[6] :=0;” and iterating

for 1:=5 downto 1 do first[1l]:=[(first[1+1]+numl[1+1])/2];
This guarantees that all the 3-bit prefixes of codes longer than three bits will be less
than first[3] (which is 3), all the 5-bit prefixes of codes longer than five bits will be
less than first[5] (which is 4), and so on.

76 2. Huffman Coding

Now for the use of these unusual codes. Canonical Huffman codes are useful in
cases where the alphabet is large and where fast decoding is mandatory. Because of the
way the codes are constructed, it is easy for the decoder to identify the length of a code
by reading and examining input bits one by one. Once the length is known, the symbol
can be found in one step. The pseudocode listed here shows the rules for decoding:

1:=1; input v;

while v<first[1]

append next input bit to v; 1:=1+1;
endwhile

As an example, suppose that the next code is 00110. As bits are input and appended
to v, it goes through the values 0, 00 = 0, 001 = 1, 0011 = 3, 00110 = 6, while 1 is
incremented from 1 to 5. All steps except the last satisfy v<first[1], so the last
step determines the value of 1 (the code length) as 5. The symbol itself is found by
subtracting v — first [5] = 6 —4 = 2, so it is the third symbol (numbering starts at 0)
in group 1 =5 (symbol 7 of the 16 symbols).

The last point to be discussed is the encoder. In order to construct the canoni-
cal Huffman code, the encoder needs to know the length of the Huffman code of every
symbol. The main problem is the large size of the alphabet, which may make it imprac-
tical or even impossible to build the entire Huffman code tree in memory. There is an
algorithm—described in [Hirschberg and Lelewer 90], [Sieminski 88], and [Salomon 07]—
that solves this problem. It calculates the code sizes for an alphabet of n symbols using
just one array of size 2n.

Considine’s Law. Whenever one word or letter can change the entire meaning of a
sentence, the probability of an error being made will be in direct proportion to the
embarrassment it will cause.

—Bob Considine

One morning I was on my way to the market and met a man with four wives
(perfectly legal where we come from). Each wife had four bags, containing four dogs
each, and each dog had four puppies. The question is (think carefully) how many were
going to the market?

2.3 Adaptive Huffman Coding

The Huffman method assumes that the frequencies of occurrence of all the symbols of
the alphabet are known to the compressor. In practice, the frequencies are seldom, if
ever, known in advance. One approach to this problem is for the compressor to read the
original data twice. The first time, it only counts the frequencies; the second time, it
compresses the data. Between the two passes, the compressor constructs the Huffman
tree. Such a two-pass method is sometimes called semiadaptive and is normally too slow
to be practical. The method that is used in practice is called adaptive (or dynamic)
Huffman coding. This method is the basis of the UNIX compact program. The method

2.3 Adaptive Huffman Coding 77

was originally developed by [Faller 73] and [Gallager 78] with substantial improvements
by [Knuth 85].

The main idea is for the compressor and the decompressor to start with an empty
Huffman tree and to modify it as symbols are being read and processed (in the case of the
compressor, the word “processed” means compressed; in the case of the decompressor, it
means decompressed). The compressor and decompressor should modify the tree in the
same way, so at any point in the process they should use the same codes, although those
codes may change from step to step. We say that the compressor and decompressor
are synchronized or that they work in lockstep (although they don’t necessarily work
together; compression and decompression normally take place at different times). The
term mirroring is perhaps a better choice. The decoder mirrors the operations of the
encoder.

Initially, the compressor starts with an empty Huffman tree. No symbols have been
assigned codes yet. The first symbol being input is simply written on the output in its
uncompressed form. The symbol is then added to the tree and a code assigned to it.
The next time this symbol is encountered, its current code is written on the output, and
its frequency incremented by 1. Since this modifies the tree, it (the tree) is examined to
see whether it is still a Huffman tree (best codes). If not, it is rearranged, an operation
that results in modified codes.

The decompressor mirrors the same steps. When it reads the uncompressed form
of a symbol, it adds it to the tree and assigns it a code. When it reads a compressed
(variable-length) code, it scans the current tree to determine what symbol the code
belongs to, and it increments the symbol’s frequency and rearranges the tree in the
same way as the compressor.

It is immediately clear that the decompressor needs to know whether the item
it has just input is an uncompressed symbol (normally, an 8-bit ASCII code, but see
Section 2.3.1) or a variable-length code. To remove any ambiguity, each uncompressed
symbol is preceded by a special, variable-size escape code. When the decompressor reads
this code, it knows that the next eight bits are the ASCII code of a symbol that appears
in the compressed file for the first time.

Escape is not his plan. I must face him. Alone.
—David Prowse as Lord Darth Vader in Star Wars (1977)

The trouble is that the escape code should not be any of the variable-length codes
used for the symbols. These codes, however, are being modified every time the tree is
rearranged, which is why the escape code should also be modified. A natural way to do
this is to add an empty leaf to the tree, a leaf with a zero frequency of occurrence, that’s
always assigned to the 0-branch of the tree. Since the leaf is in the tree, it is assigned
a variable-length code. This code is the escape code preceding every uncompressed
symbol. As the tree is being rearranged, the position of the empty leaf—and thus its
code—change, but this escape code is always used to identify uncompressed symbols in
the compressed file. Figure 2.17 shows how the escape code moves and changes as the
tree grows.

/‘\,, ;,7J\

78 2. Huffman Coding

Figure 2.17: The Escape Code.

2.3.1 Uncompressed Codes

If the symbols being compressed are ASCII characters, they may simply be assigned
their ASCII codes as uncompressed codes. In the general case where there may be any
symbols, uncompressed codes of two different sizes can be assigned by a simple method.
Here is an example for the case n = 24. The first 16 symbols can be assigned the numbers
0 through 15 as their codes. These numbers require only 4 bits, but we encode them in 5
bits. Symbols 17 through 24 can be assigned the numbers 17—16—1=0,18—16—-1=1
through 24 — 16 — 1 = 7 as 4-bit numbers. We end up with the sixteen 5-bit codes 00000,
00001, ...,01111, followed by the eight 4-bit codes 0000, 0001, ...,0111.

In general, we assume an alphabet that consists of the n symbols a1, as, ..., a,. We
select integers m and r such that 2™ < n < 2™+! and r = n—2™. The first 2™ symbols
are encoded as the (m + 1)-bit numbers 0 through 2™ — 1. The remaining symbols are
encoded as m-bit numbers such that the code of a is £ — 2™ — 1. This code is also
called a phased-in binary code (also a minimal binary code).

2.3.2 Modifying the Tree

The chief principle for modifying the tree is to check it each time a symbol is input. If
the tree is no longer a Huffman tree, it should be rearranged to become one. A glance
at Figure 2.18a shows what it means for a binary tree to be a Huffman tree. The tree in
the figure contains five symbols: A, B, C, D, and E. It is shown with the symbols and
their frequencies (in parentheses) after 16 symbols have been input and processed. The
property that makes it a Huffman tree is that if we scan it level by level, scanning each
level from left to right, and going from the bottom (the leaves) to the top (the root),
the frequencies will be in sorted, nondescending order. Thus, the bottom-left node (A)
has the lowest frequency, and the top-right node (the root) has the highest frequency.
This is called the sibling property.

Exercise 2.9: Why is this the criterion for a tree to be a Huffman tree?

Here is a summary of the operations needed to update the tree. The loop starts
at the current node (the one corresponding to the symbol just input). This node is a
leaf that we denote by X, with frequency of occurrence F. Each iteration of the loop
involves three steps as follows:

1. Compare X to its successors in the tree (from left to right and bottom to top). If
the immediate successor has frequency F + 1 or greater, the nodes are still in sorted
order and there is no need to change anything. Otherwise, some successors of X have

2.3 Adaptive Huffman Coding 79

identical frequencies of F' or smaller. In this case, X should be swapped with the last
node in this group (except that X should not be swapped with its parent).

2. Increment the frequency of X from F to F'+ 1. Increment the frequencies of all its
parents.

3. If X is the root, the loop stops; otherwise, it repeats with the parent of node X.

Figure 2.18b shows the tree after the frequency of node A has been incremented
from 1 to 2. It is easy to follow the three rules above to see how incrementing the
frequency of A results in incrementing the frequencies of all its parents. No swaps are
needed in this simple case because the frequency of A hasn’t exceeded the frequency of
its immediate successor B. Figure 2.18¢c shows what happens when A’s frequency has
been incremented again, from 2 to 3. The three nodes following A, namely, B, C, and
D, have frequencies of 2, so A is swapped with the last of them, D. The frequencies
of the new parents of A are then incremented, and each is compared with its successor,
but no more swaps are needed.

Figure 2.18d shows the tree after the frequency of A has been incremented to 4.
Once we decide that A is the current node, its frequency (which is still 3) is compared to
that of its successor (4), and the decision is not to swap. A’s frequency is incremented,
followed by incrementing the frequencies of its parents.

In Figure 2.18e, A is again the current node. Its frequency (4) equals that of its
successor, so they should be swapped. This is shown in Figure 2.18f, where A’s frequency
is 5. The next loop iteration examines the parent of A, with frequency 10. It should
be swapped with its successor E (with frequency 9), which leads to the final tree of
Figure 2.18g.

2.3.3 Counter Overflow

The frequency counts are accumulated in the Huffman tree in fixed-size fields, and
such fields may overflow. A 16-bit unsigned field can accommodate counts of up to
216 — 1 = 65,535. A simple solution to the counter overflow problem is to watch the
count field of the root each time it is incremented, and when it reaches its maximum
value, to rescale all the frequency counts by dividing them by 2 (integer division). In
practice, this is done by dividing the count fields of the leaves, then updating the counts
of the interior nodes. Each interior node gets the sum of the counts of its children. The
problem is that the counts are integers, and integer division reduces precision. This may
change a Huffman tree to one that does not satisfy the sibling property.

A simple example is shown in Figure 2.18h. After the counts of the leaves are halved,
the three interior nodes are updated as shown in Figure 2.18i. The latter tree, however,
is no longer a Huffman tree, since the counts are no longer in sorted order. The solution
is to rebuild the tree each time the counts are rescaled, which does not happen very
often. A Huffman data compression program intended for general use should therefore
have large count fields that would not overflow very often. A 4-byte count field overflows
at 232 — 1~ 4.3 x 10°.

It should be noted that after rescaling the counts, the new symbols being read and
compressed have more effect on the counts than the old symbols (those counted before
the rescaling). This turns out to be fortuitous since it is known from experience that
the probability of appearance of a symbol depends more on the symbols immediately
preceding it than on symbols that appeared in the distant past.

Huffman Coding

2.

80

(18)

(17)

(16)

)

E
9

(

()

E

(9)

(4)

mEnEEE

(4)

B C A
2 @2 @

D
(2)

B C D
) 2 @ ©

A
(2

(19)

(19)

(19)

(10)

(20)

464

930

154

620

310

310

155 155

7

7

310 310

155 155

(11)

Figure 2.18: Updating the Huffman Tree.

2.3 Adaptive Huffman Coding 81

2.3.4 Code Overflow

An even more serious problem is code overflow. This may happen when many symbols
are added to the tree, and it becomes tall. The codes themselves are not stored in the
tree, since they change all the time, and the compressor has to figure out the code of a
symbol X each time X is input. Here are the details of this process:

1. The encoder has to locate symbol X in the tree. The tree has to be implemented as
an array of structures, each a node, and the array is searched linearly.

2. If X is not found, the escape code is emitted, followed by the uncompressed code of
X. X is then added to the tree.

3. If X is found, the compressor moves from node X back to the root, building the
code bit by bit as it goes along. Each time it goes from a left child to a parent, a “1”
is appended to the code. Going from a right child to a parent appends a “0” bit to the
code (or vice versa, but this should be consistent because it is mirrored by the decoder).
Those bits have to be accumulated someplace, since they have to be emitted in the
reverse order in which they are created. When the tree gets taller, the codes get longer.
If they are accumulated in a 16-bit integer, then codes longer than 16 bits would cause
a malfunction.

One solution to the code overflow problem is to accumulate the bits of a code in a
linked list, where new nodes can be created, limited in number only by the amount of
available memory. This is general but slow. Another solution is to accumulate the codes
in a large integer variable (perhaps 50 bits wide) and document a maximum code size
of 50 bits as one of the limitations of the program.

Fortunately, this problem does not affect the decoding process. The decoder reads
the compressed code bit by bit and uses each bit to move one step left or right down
the tree until it reaches a leaf node. If the leaf is the escape code, the decoder reads the
uncompressed code of the symbol off the compressed data (and adds the symbol to the
tree). Otherwise, the uncompressed code is found in the leaf node.

Exercise 2.10: Given the 11-symbol string sir_sid,is, apply the adaptive Huffman
method to it. For each symbol input, show the output, the tree after the symbol has
been added to it, the tree after being rearranged (if necessary), and the list of nodes
traversed left to right and bottom up.

2.3.5 A Variant

This variant of the adaptive Huffman method is simpler but less efficient. The idea
is to calculate a set of n variable-length codes based on equal probabilities, to assign
those codes to the n symbols at random, and to change the assignments “on the fly,” as
symbols are being read and compressed. The method is inefficient because the codes are
not based on the actual probabilities of the symbols in the input. However, it is simpler
to implement and also faster than the adaptive method described earlier, because it has
to swap rows in a table, rather than update a tree, when updating the frequencies of
the symbols.

The main data structure is an n x 3 table where the three columns store the names
of the n symbols, their frequencies of occurrence so far, and their codes. The table is
always kept sorted by the second column. When the frequency counts in the second

82 2. Huffman Coding

Name Count Code | Name Count Code | Name Count Code | Name Count Code
aq 0 0 as 1 0 a9 1 0 a4q 2 0
as 0 10 ay 0 10 a4 1 10 as 1 10
as 0 110 as 0 110 as 0 110 as 0 110
a4 0 111 ay 0 111 ay 0 111 aq 0 111

(a) (b) (c) (d)

Table 2.19: Four Steps in a Huffman Variant.

column change, rows are swapped, but only columns 1 and 2 are moved. The codes in
column 3 never change. Table 2.19 shows an example of four symbols and the behavior
of the method when the string as, a4, a4 is compressed.

Table 2.19a shows the initial state. After the first symbol ay is read, its count
is incremented, and since it is now the largest count, rows 1 and 2 are swapped (Ta-
ble 2.19b). After the second symbol a4 is read, its count is incremented and rows 2 and
4 are swapped (Table 2.19¢). Finally, after reading the last symbol a4, its count is the
largest, so rows 1 and 2 are swapped (Table 2.19d).

The only point that can cause a problem with this method is overflow of the count
fields. If such a field is k bits wide, its maximum value is 2¥ — 1, so it will overflow
when incremented for the 2¥th time. This may happen if the size of the input file is not
known in advance, which is very common. Fortunately, we do not really need to know
the counts, we just need them in sorted order, which makes it easy to solve this problem.

One solution is to count the input symbols and, after 2 — 1 symbols are input and
compressed, to (integer) divide all the count fields by 2 (or shift them one position to
the right, if this is easier).

Another, similar, solution is to check each count field every time it is incremented,
and if it has reached its maximum value (if it consists of all ones), to integer divide all
the count fields by 2, as mentioned earlier. This approach requires fewer divisions but
more complex tests.

Naturally, whatever solution is adopted should be used by both the compressor and
decompressor.

2.3.6 Vitter’s Method

An improvement of the original algorithm, due to [Vitter 87], which also includes exten-
sive analysis is based on the following key ideas:

1. A different scheme should be used to number the nodes in the dynamic Huffman
tree. It is called implicit numbering, and it numbers the nodes from the bottom up and
in each level from left to right.

2. The Huffman tree should be updated in such a way that the following will always
be satisfied. For each weight w, all leaves of weight w precede (in the sense of implicit
numbering) all the internal nodes of the same weight. This is an invariant.

These ideas result in the following benefits:

1. In the original algorithm, it is possible that a rearrangement of the tree would
move a node down one level. In the improved version, this does not happen.

2.3 Adaptive Huffman Coding 83

2. Each time the Huffman tree is updated in the original algorithm, some nodes
may be moved up. In the improved version, at most one node has to be moved up.

3. The Huffman tree in the improved version minimizes the sum of distances from
the root to the leaves and also has the minimum height.

A special data structure, called a floating tree, is proposed to make it easy to
maintain the required invariant. It can be shown that this version performs much better
than the original algorithm. Specifically, if a two-pass Huffman method compresses an
input file of n symbols to S bits, then the original adaptive Huffman algorithm can
compress it to at most 25 + n bits, whereas the improved version can compress it down
to S 4+ n bits—a significant difference! Notice that these results do not depend on the
size of the alphabet, only on the size n of the data being compressed and on its nature
(which determines).

“I think you’re begging the question,” said Haydock, “and I can see looming ahead
one of those terrible exercises in probability where six men have white hats and six
men have black hats and you have to work it out by mathematics how likely it is that
the hats will get mixed up and in what proportion. If you start thinking about things
like that, you would go round the bend. Let me assure you of that!”

—Agatha Christie, The Mirror Crack’d

AW Intermezzo <@

History of Fax. Fax machines have been popular since the mid-1980s, so it is natural
to assume that this is new technology. In fact, the first fax machine was invented in
1843, by Alexander Bain, a Scottish clock and instrument maker
and all-round inventor. Among his many other achievements, Bain
also invented the first electrical clock (powered by an electromagnet
propelling a pendulum), developed chemical telegraph receivers and
punch-tapes for fast telegraph transmissions, and installed the first
telegraph line between Edinburgh and Glasgow.

The patent for the fax machine (grandly titled “improvements
in producing and regulating electric currents and improvements in
timepieces and in electric printing and signal telegraphs”) was granted
to Bain on May 27, 1843, 33 years before a similar patent (for the
telephone) was given to Alexander Graham Bell.

Bain’s fax machine transmitter scanned a flat, electrically conductive metal surface
with a stylus mounted on a pendulum that was powered by an electromagnet. The
stylus picked up writing from the surface and sent it through a wire to the stylus of
the receiver, where the image was reproduced on a similar electrically conductive metal
surface. Reference [hffax 07] has a figure of this apparatus.

Unfortunately, Bain’s invention was not very practical and did not catch on, which
is easily proved by the well-known fact that Queen Victoria never actually said “I'll drop
you a fax.”

In 1850, Frederick Bakewell, a London inventor, made several improvements on
Bain’s design. He built a device that he called a copying telegraph, and received a patent

84 2. Huffman Coding

on it. Bakewell demonstrated his machine at the 1851 Great Exhibition in London.

In 1862, Italian physicist Giovanni Caselli built a fax machine (the pantelegraph),
that was based on Bain’s invention and also included a synchronizing apparatus. It
was more successful than Bain’s device and was used by the French Post and Telegraph
agency between Paris and Lyon from 1856 to 1870. Even the Emperor of China heard
about the pantelegraph and sent officials to Paris to study the device. The Chinese
immediately recognized the advantages of facsimile for Chinese text, which was impos-
sible to handle by telegraph because of its thousands of ideograms. Unfortunately, the
negotiations between Peking and Caselli failed.

Elisha Gray, arguably the best example of the quintessential loser, invented the
telephone, but is virtually unknown today because he was beaten by Alexander Graham
Bell, who arrived at the patent office a few hours before Gray on the fateful day of March
7, 1876. Born in Barnesville, Ohio, Gray invented and patented many electrical devices,
including a facsimile apparatus. He also founded what later became the Western Electric
Company.

Ernest A. Hummel, a watchmaker from St. Paul, Minnesota, invented, in 1895
a device he dubbed a copying telegraph, or telediagraph. This machine was based on
synchronized rotating drums, with a platinum stylus as an electrode in the transmitter.
It was used by the New York Herald to send pictures via telegraph lines. An improved
version (in 1899) was sold to several newspapers (the Chicago Times Herald, the St.
Louis Republic, the Boston Herald, and the Philadelphia Inquirer) and it, as well as
other, very similar machines, were in use to transmit newsworthy images until the 1970s.

A practical fax machine (perhaps the first practical one) was invented in 1902 by
Arthur Korn in Germany. This was a photoelectric device and it was used to transmit
photographs in Germany from 1907.

In 1924, Richard H. Ranger, a designer for the Radio Corporation of America
(RCA), invented the wireless photoradiogram, or transoceanic radio facsimile. This
machine can be considered the true forerunner of today’s fax machines. On November 29,
1924, a photograph of the American President Calvin Coolidge that was sent from New
York to London became the first image reproduced by transoceanic wireless facsimile.

The next step was the belinograph, invented in 1925 by the French engineer Edouard
Belin. An image was placed on a drum and scanned with a powerful beam of light. The
reflection was converted to an analog voltage by a photoelectric cell. The voltage was sent
to a receiver, where it was converted into mechanical movement of a pen to reproduce
the image on a blank sheet of paper on an identical drum rotating at the same speed.
The fax machines we all use are still based on the principle of scanning a document with
light, but they are controlled by a microprocessor and have a small number of moving
parts.

In 1924, the American Telephone & Telegraph Company (AT&T) decided to im-
prove telephone fax technology. The result of this effort was a telephotography machine
that was used to send newsworthy photographs long distance for quick newspaper pub-
lication.

By 1926, RCA invented the Radiophoto, a fax machine based on radio transmissions.

The Hellschreiber was invented in 1929 by Rudolf Hell, a pioneer in mechanical
image scanning and transmission. During WW2, it was sometimes used by the German
military in conjunction with the Enigma encryption machine.

2.4 Facsimile Compression 85

In 1947, Alexander Muirhead invented a very successful fax machine.

On March 4, 1955, the first radio fax transmission was sent across the continent.

Fax machines based on optical scanning of a document were developed over the
years, but the spark that ignited the fax revolution was the development, in 1983, of the
Group 3 CCITT standard for sending faxes at rates of 9,600 bps.

More history and pictures of many early fax and telegraph machines can be found
at [hffax 07] and [technikum?29 07].

2.4 Facsimile Compression

Data compression is especially important when images are transmitted over a communi-
cations line because a person is often waiting at the receiving end, eager to see something
quickly. Documents transferred between fax machines are sent as bitmaps, so a stan-
dard compression algorithm was needed when those machines became popular. Several
methods were developed and proposed by the ITU-T.

The ITU-T is one of four permanent parts of the International Telecommunications
Union (ITU), based in Geneva, Switzerland (http://www.itu.ch/). It issues recommen-
dations for standards applying to modems, packet switched interfaces, V.24 connectors,
and similar devices. Although it has no power of enforcement, the standards it recom-
mends are generally accepted and adopted by industry. Until March 1993, the ITU-T
was known as the Consultative Committee for International Telephone and Telegraph
(Comité Consultatif International Télégraphique et Téléphonique, or CCITT).

’CCITT: Can’t Conceive Intelligent Thoughts Today‘

The first data compression standards developed by the ITU-T were T2 (also known
as Group 1) and T3 (Group 2). These are now obsolete and have been replaced by T4
(Group 3) and T6 (Group 4). Group 3 is currently used by all fax machines designed to
operate with the Public Switched Telephone Network (PSTN). These are the machines
we have at home, and at the time of writing, they operate at maximum speeds of 9,600
baud. Group 4 is used by fax machines designed to operate on a digital network, such
as ISDN. They have typical speeds of 64K bits/sec (baud). Both methods can produce
compression factors of 10 or better, reducing the transmission time of a typical page to
about a minute with the former, and a few seconds with the latter.

One-dimensional coding. A fax machine scans a document line by line, con-
verting each scan line to many small black and white dots called pels (from Picture
ELement). The horizontal resolution is always 8.05 pels per millimeter (about 205 pels
per inch). An 8.5-inch-wide scan line is therefore converted to 1728 pels. The T4 stan-
dard, though, recommends to scan only about 8.2 inches, thereby producing 1664 pels
per scan line (these numbers, as well as those in the next paragraph, are all to within
+1% accuracy).

’The word facsimile comes from the Latin facere (make) and similis (like). ‘

86 2. Huffman Coding

The vertical resolution is either 3.85 scan lines per millimeter (standard mode) or
7.7 lines/mm (fine mode). Many fax machines have also a very-fine mode, where they
scan 15.4 lines/mm. Table 2.20 assumes a 10-inch-high page (254 mm), and shows
the total number of pels per page, and typical transmission times for the three modes
without compression. The times are long, illustrating the importance of compression in
fax transmissions.

Scan Pels per Pels per Time Time

lines line page (sec.) (min.)

978 1664 1.670M 170 2.82
1956 1664 3.255M 339 5.65
3912 1664 6.510M 678 11.3

Ten inches equal 254 mm. The number of pels
is in the millions, and the transmission times, at
9600 baud without compression, are between 3
and 11 minutes, depending on the mode. How-
ever, if the page is shorter than 10 inches, or if
most of it is white, the compression factor can
be 10 or better, resulting in transmission times
of between 17 and 68 seconds.

Table 2.20: Fax Transmission Times.

To derive the Group 3 code, the committee appointed by the ITU-T counted all the
run lengths of white and black pels in a set of eight “training” documents that they felt
represent typical text and images sent by fax, and then applied the Huffman algorithm
to construct a variable-length code and assign codewords to all the run length. (The
eight documents are described in Table 2.21 and can be found at [funet 07].) The most
common run lengths were found to be 2, 3, and 4 black pixels, so they were assigned
the shortest codes (Table 2.22). Next come run lengths of 2-7 white pixels, which were
assigned slightly longer codes. Most run lengths were rare and were assigned long, 12-bit
codes. Thus, Group 3 uses a combination of RLE and Huffman coding.

Image Description

1 Typed business letter (English)

Circuit diagram (hand drawn)

Printed and typed invoice (French)

Densely typed report (French)

Printed technical article including figures and equations (French)
Graph with printed captions (French)

Dense document (Kanji)

Handwritten memo with very large white-on-black letters (English)

0 3O Ut i Wi

Table 2.21: The Eight CCITT Training Documents.

2.4 Facsimile Compression 87

o Exercise 2.11: A run length of 1,664 white pels was assigned the short code 011000.
Why is this length so common?

Since run lengths can be long, the Huffman algorithm was modified. Codes were
assigned to run lengths of 1 to 63 pels (they are the termination codes in Table 2.22a)
and to run lengths that are multiples of 64 pels (the make-up codes in Table 2.22b).
Group 3 is therefore a modified Huffman code (also called MH). The code of a run length
is either a single termination code (if the run length is short) or one or more make-up
codes, followed by one termination code (if it is long). Here are some examples:

1. A run length of 12 white pels is coded as 001000.

2. A run length of 76 white pels (= 64 4 12) is coded as 11011|001000.

3. A run length of 140 white pels (= 128 4+ 12) is coded as 10010/001000.

4. A run length of 64 black pels (= 64 + 0) is coded as 0000001111]0000110111.
5. A run length of 2,561 black pels (2560 + 1) is coded as 000000011111]010.

o Exercise 2.12: There are no runs of length zero. Why then were codes assigned to
runs of zero black and zero white pels?

o Exercise 2.13: An 8.5-inch-wide scan line results in 1,728 pels, so how can there be a
run of 2,561 consecutive pels?

Each scan line is coded separately, and its code is terminated by the special 12-bit
EOL code 000000000001. Each line also gets one white pel appended to it on the left
when it is scanned. This is done to remove any ambiguity when the line is decoded on
the receiving end. After reading the EOL for the previous line, the receiver assumes that
the new line starts with a run of white pels, and it ignores the first of them. Examples:
1. The 14-pel line I | W [[][] Jiscoded as the run lengths 1w 3b 2w
2b 7w EOL, which become 000111]10/0111|11|1111]000000000001. The decoder ignores
the single white pel at the start.

2. The line | | MBI [[| [WM is coded as the run lengths 3w 5b 5w 2b
EOL, which becomes the binary string 1000/0011|1100|11|000000000001.

o Exercise 2.14: The Group 3 code for a run length of five black pels (0011) is also the
prefix of the codes for run lengths of 61, 62, and 63 white pels. Explain this.

In computing, a newline (also known as a line break or end-of-line / EOL character)
is a special character or sequence of characters signifying the end of a line of text.
The name comes from the fact that the next character after the newline will appear
on a new line—that is, on the next line below the text immediately preceding the
newline. The actual codes representing a newline vary across hardware platforms and
operating systems, which can be a problem when exchanging data between systems
with different representations.

—From http://en.wikipedia.org/wiki/End-of-1line

The Group 3 code has no error correction, but many errors can be detected. Because
of the nature of the Huffman code, even one bad bit in the transmission can cause the
receiver to get out of synchronization, and to produce a string of wrong pels. This
is why each scan line is encoded separately. If the receiver detects an error, it skips

88

(b)

2. Huffman Coding

White Black ‘White Black
Run code- code- Run code- code-
length word word length word word
0 00110101 0000110111 32 00011011 000001101010
1 000111 010 33 00010010 000001101011
2 0111 11 34 00010011 000011010010
3 1000 10 35 00010100 000011010011
4 1011 011 36 00010101 000011010100
5 1100 0011 37 00010110 000011010101
6 1110 0010 38 00010111 000011010110
7 1111 00011 39 00101000 000011010111
8 10011 000101 40 00101001 000001101100
9 10100 000100 41 00101010 000001101101
10 00111 0000100 42 00101011 000011011010
11 01000 0000101 43 00101100 000011011011
12 001000 0000111 44 00101101 000001010100
13 000011 00000100 45 00000100 000001010101
14 110100 00000111 46 00000101 000001010110
15 110101 000011000 47 00001010 000001010111
(a) 16 101010 0000010111 48 00001011 000001100100
17 101011 0000011000 49 01010010 000001100101
18 0100111 0000001000 50 01010011 000001010010
19 0001100 00001100111 51 01010100 000001010011
20 0001000 00001101000 52 01010101 000000100100
21 0010111 00001101100 53 00100100 000000110111
22 0000011 00000110111 54 00100101 000000111000
23 0000100 00000101000 55 01011000 000000100111
24 0101000 00000010111 56 01011001 000000101000
25 0101011 00000011000 57 01011010 000001011000
26 0010011 000011001010 58 01011011 000001011001
27 0100100 000011001011 59 01001010 000000101011
28 0011000 000011001100 60 01001011 000000101100
29 00000010 000011001101 61 00110010 000001011010
30 00000011 000001101000 62 00110011 000001100110
31 00011010 000001101001 63 00110100 000001100111
White Black ‘White Black
Run code- code- Run code- code-
length word word length word word
64 11011 0000001111 1344 011011010 0000001010011
128 10010 000011001000 1408 011011011 0000001010100
192 010111 000011001001 1472 010011000 0000001010101
256 0110111 000001011011 1536 010011001 0000001011010
320 00110110 000000110011 1600 010011010 0000001011011
384 00110111 000000110100 1664 011000 0000001100100
448 01100100 000000110101 1728 010011011 0000001100101
512 01100101 0000001101100 1792 00000001000 same as
576 01101000 0000001101101 1856 00000001100 white
640 01100111 0000001001010 1920 00000001101 from this
704 011001100 0000001001011 1984 000000010010 point
768 011001101 0000001001100 2048 000000010011
832 011010010 0000001001101 2112 000000010100
896 011010011 0000001110010 2176 000000010101
960 011010100 0000001110011 2240 000000010110
1024 011010101 0000001110100 2304 000000010111
1088 011010110 0000001110101 2368 000000011100
1152 011010111 0000001110110 2432 000000011101
1216 011011000 0000001110111 2496 000000011110
1280 011011001 0000001010010 2560 000000011111

Table 2.22: Group 3 and 4 Fax Codes: (a) Termination Codes, (b) Make-Up Codes.

2.4 Facsimile Compression 89

bits, looking for an EOL. This way, one error can cause at most one scan line to be
received incorrectly. If the receiver does not see an EOL after a certain number of lines,
it assumes a high error rate, and it aborts the process, notifying the transmitter. Since
the codes are between two and 12 bits long, the receiver detects an error if it cannot
decode a valid code after reading 12 bits.

Each page of the coded document is preceded by one EOL and is followed by six EOL
codes. Because each line is coded separately, this method is a one-dimensional coding
scheme. The compression ratio depends on the image. Images with large contiguous
black or white areas (text or black and white images) can be highly compressed. Images
with many short runs can sometimes produce negative compression. This is especially
true in the case of images with shades of gray (such as scanned photographs). Such
shades are produced by halftoning, which covers areas with many alternating black and
white pels (runs of length 1).

Exercise 2.15: What is the compression ratio for runs of length one (i.e., strictly
alternating pels)?

The T4 standard also allows for fill bits to be inserted between the data bits and
the EOL. This is done in cases where a pause is necessary, or where the total number of
bits transmitted for a scan line must be a multiple of 8. The fill bits are zeros.

Example: The binary string 000111]10/0111|11]|1111]000000000001 becomes
000111]10/0111|11|1111]00]0000000001 after two zeros are added as fill bits, bringing the
total length of the string to 32 bits (= 8 x 4). The decoder sees the two zeros of the fill,
followed by the 11 zeros of the EOL, followed by the single 1, so it knows that it has
encountered a fill followed by an EOL.

Two-dimensional coding. This variant was developed because one-dimensional
coding produces poor results for images with gray areas. Two-dimensional coding is
optional on fax machines that use Group 3 but is the only method used by machines
intended to work in a digital network. When a fax machine using Group 3 supports two-
dimensional coding as an option, each EOL is followed by one extra bit, to indicate the
compression method used for the next scan line. That bit is 1 if the next line is encoded
with one-dimensional coding, and 0 if it is encoded with two-dimensional coding.

The two-dimensional coding method is also called MMR, for modified modified
READ, where READ stands for relative element address designate. The term “mod-
ified modified” is used because this is a modification of one-dimensional coding, which
itself is a modification of the original Huffman method. The two-dimensional coding
method is described in detail in [Salomon 07] and other references, but here are its main
principles. The method compares the current scan line (called the coding line) to its
predecessor (referred to as the reference line) and records the differences between them,
the assumption being that two consecutive lines in a document will normally differ by
just a few pels. The method assumes that there is an all-white line above the page, which
is used as the reference line for the first scan line of the page. After coding the first line,
it becomes the reference line, and the second scan line is coded. As in one-dimensional
coding, each line is assumed to start with a white pel, which is ignored by the receiver.

The two-dimensional coding method is more prone to errors than one-dimensional
coding, because any error in decoding a line will cause errors in decoding all its successors
and will propagate throughout the entire document. This is why the T.4 (Group 3)

90 2. Huffman Coding

standard includes a requirement that after a line is encoded with the one-dimensional
method, at most K — 1 lines will be encoded with the two-dimensional coding method.
For standard resolution K = 2, and for fine resolution K = 4. The T.6 standard
(Group 4) does not have this requirement, and uses two-dimensional coding exclusively.

Chapter Summary

Huffman coding is one of the basic techniques of data compression. It is also fast,
conceptually simple, and easy to implement. The Huffman encoding algorithm starts
with a set of symbols whose probabilities are known and constructs a code tree. Once
the tree is complete, it is used to determine the variable-length, prefix codewords for the
individual symbols. Each leaf of the tree corresponds to a data symbol and the prefix
code of a symbol S is determined by sliding down the tree from the root to the leaf
that corresponds to S. It can be shown that these codewords are the best possible in
the sense that they feature the shortest average length. However, the codewords are not
unique and there are several (perhaps even many) different sets of codewords that have
the same average length. Huffman decoding starts by reading bits from the compressed
file and using them to slide down the tree from node to node until a leaf (and thus a
data symbol) is reached. Section 2.2.1 describes an interesting method for fast decoding.

The Huffman method requires knowledge of the symbols’ probabilities, but in prac-
tice, these are not always known in advance. This chapter lists the following methods
for handling this problem.

m Use a set of training documents. The implementor of a Huffman codec (compres-
sor/decompressor) selects a set of documents that are judged typical or average. The
documents are analyzed once, counting the number of occurrences (and hence also the
probability) of each data symbol. Based on these probabilities, the implementor con-
structs a Huffman code (a set of codewords for all the symbols in the alphabet) and
hard-codes this code in both encoder and decoder. Such a code may not conform to the
symbols’ probabilities of any particular input file that’s being compressed, and so does
not produce the best compression, but this approach is simple and fast. The compression
method used by fax machines (Section 2.4) is based on this approach.

m A two-pass compression job produces the ideal codewords for the input file, but is
slow. In this approach, the input file is read twice. In the first pass, the encoder counts
symbol occurrences. Between the passes, the encoder uses this information to compute
symbol probabilities and constructs a set of Huffman codewords for the particular data
being compressed. In the second pass the encoder actually compresses the data by
replacing each data symbol with its Huffman codeword.

= An adaptive compression algorithm achieves the best of both worlds, being both
effective and fast, but is more difficult to implement. The principle is to start with
an empty Huffman code tree and to update the tree as input symbols are read and
processed. When a symbol is input, the tree is searched for it. If the symbol is in the
tree, its codeword is used; otherwise, it is added to the tree and a new codeword is
assigned to it. In either case, the tree is examined and may have to be rearranged to

Chapter Summary 91

keep it a Huffman code tree. This process has to be designed carefully, to make sure
that the decoder can perform it in the same way as the encoder (in lockstep). Such an
adaptive algorithm is discussed in Section 2.3.

The Huffman method is simple, fast, and produces excellent results, but is not as
effective as arithmetic coding (Chapter 4). The conscientious reader may benefit from
the discussion in [Bookstein and Klein 93], where the authors argue in favor of Huffman
coding.

Self-Assessment Questions

1. In a programming language of your choice, implement Huffman encoding and
test it on the five symbols of Figure 2.1.

2. Complete the decoding example in the second paragraph of Section 2.2.1.

3. The fax compression standard of Section 2.4 is based on eight training documents
selected by the CCITT (the predecessor of the ITU-T). Select your own set of eight
training documents (black and white images on paper) and scan them at 200 dpi to
determine the frequencies of occurrence of all the runs of black and white pels. Sort
the runs in ascending order and compare their probabilities to the lengths of the codes
of Table 2.22 (your most-common runs should correspond to the shortest codes of this
table).

The novelty of waking up to a fax machine next to your bed going off
in the middle of the night with an order from Japan wears off.

—Naomi Bradshaw

G

3
Dictionary Methods

= () o Prelude (@)

The Huffman algorithm is based on the probabilities of the individual data symbols.
These probabilities become a statistical model of the data. As a result, the compres-
sion produced by this method depends on how good that model is. Dictionary-based
compression methods are different. They do not use a statistical model of the data,
nor do they employ variable-length codes. Instead they select strings of symbols from
the input and employ a dictionary to encode each string as a token. The dictionary
holds strings of symbols, and it may be static or dynamic (adaptive). The former is
permanent, sometimes allowing the addition of strings but no deletions, whereas the
latter holds strings previously found in the input, allowing for additions and deletions
of strings as new input is being read.

Given a string of n symbols, a dictionary-based compressor can, in principle, com-
press it down to nH bits where H is the entropy of the string. Thus, dictionary-based
compressors are entropy encoders, but only if the input file is very large. For most files
in practical applications, dictionary-based compressors produce results that are good
enough to make this type of encoder very popular. Such encoders are also general
purpose, performing on images and audio data as well as they perform on text.

The simplest example of a static dictionary is a dictionary of the English language
used to compress English text. Imagine a dictionary containing perhaps half a million
words (without their definitions). A word (a string of symbols terminated by a space or
a punctuation mark) is read from the input and the dictionary is searched. If a match is
found, an index to the dictionary is written on the output. Otherwise, the uncompressed
word itself is written.

As a result, the output contains indexes and raw words, and it is important to
distinguish between them. This can be done by reserving an extra bit in each item

94 3. Dictionary Methods

written on the output. In principle, a 19-bit index is sufficient to specify an item in
a 219 = 524,288-word dictionary. Thus, when a match is found, we can write a 20-bit
token that consists of a flag bit (perhaps a zero) followed by a 19-bit index. When no
match is found, a flag of 1 is written on the output, followed by the size of the unmatched
word, followed by the word itself.

Example: Assuming that the word bet is found in dictionary entry 1025, it is
encoded as the 20-bit number 0/0000000010000000001. Assuming that the word xet
is not found, it is encoded as 1|0000011|01111000|01100101]|01110100. This is a 4-byte
number where the 7-bit field 0000011 indicates that three more bytes follow.

Assuming that the size is written as a 7-bit number, and that an average word size is
five characters, an uncompressed word occupies, on average, six bytes (= 48 bits) in the
output. Compressing 48 bits into 20 bits is excellent if it happens often enough. Thus,
we have to answer the question, how many matches are needed in order to have overall
compression? We denote the probability of a match (the case where the word is found
in the dictionary) by P. After reading and compressing N words, the size of the output
will be N[20P + 48(1 — P)] = N[48 — 28P] bits. The size of the input is (assuming five
characters per word) 40N bits. Compression is achieved when N[48—28P] < 40N, which
implies P > 0.29. We need a matching rate of 29% or better to achieve compression.

Exercise 3.1: (1) What compression factor do we get with P = 0.97 (2) What is the
maximum compression possible with this method?

As long as the input consists of English text, most words will be found in a 500,000-
word dictionary. Other types of data, however, may not do as well. A file with the source
code of a computer program may contain “words” such as cout, xor, and malloc that
may not be found in an English dictionary. A binary file normally contains gibberish
when viewed in ASCIT (Figure 3.1), so very few matches may be found, resulting in
considerable expansion instead of compression.

&'01$0!&0(,0110<70000fl« "+ f0q,A
UjI¥EbA=anew ifGA+DO06b/ ARUfriej¢
OQidne®uaOBAI {O=(% 10 ET 6L~
C;oj0iTO6YDaQOewno

Figure 3.1: An Image and Corresponding Text.

Thus, a static dictionary is not a good choice for a general-purpose compressor. It
may, however, be a good choice for a special-purpose dictionary-based encoder. Consider,
for example, a chain of hardware stores. Their files may contain words such as nut, bolt,
and paint many times, but words such as peanut, lightning, and painting will be
rare. Special-purpose compression software for such a company may benefit from a small,
specialized dictionary containing, perhaps, just a few hundred words. The computers in
each branch would have a copy of the dictionary, making it easy to compress files and
send them between stores and offices in the chain.

In general, an adaptive dictionary-based method is preferable. Such a method can
start with an empty dictionary or with a small, default dictionary, add words to it as

3.1L278 95

they are found in the input, and delete old words because a big dictionary slows down
the search. Such a method consists of a loop where each iteration starts by reading
the input and breaking it up (parsing it) into words or phrases. It then should search
the dictionary for each word and, if a match is found, write a token on the output.
Otherwise, the uncompressed word is output and also added to the dictionary. The last
step in each iteration checks whether an old word should be deleted from the dictionary.
This may sound complicated, but it has two advantages:

1. It involves string search and match operations, rather than numerical computations.
Many programmers prefer that.

2. The decoder is simple (this is an asymmetric compression method). It reads the next
input item and determines whether it is a token or raw data. A token is used to obtain
data from the dictionary and write it on the output. Raw data is output as is. The
decoder does not have to parse the input in a complex way, nor does it have to search
the dictionary to find matches. Many programmers like that, too.

I love the dictionary, Kenny, it’s the only book with the words in
the right place.

—Paul Reynolds as Colin Mathews in Press Gang (1989)

3.1 LZ78

The LZ78 method (sometimes also referred to as LZ2) [Ziv and Lempel 78] does not
employ any search buffer, look-ahead buffer, or sliding window. Instead, there is a
dictionary of previously-encountered strings. This dictionary starts empty (or almost
empty), and its size is limited only by the amount of available memory. The encoder
outputs two-field tokens. The first field is a pointer to the dictionary; the second is the
code of a symbol. Tokens do not contain the length of a string, because this is implied in
the dictionary. Each token corresponds to a string of input symbols, and that string is
added to the dictionary after the token is written on the compressed file. Nothing is ever
deleted from the dictionary, which is both an advantage over LZ77 (since future strings
can be compressed even by strings seen in the distant past) and a liability (because the
dictionary tends to grow rapidly and to fill up the entire available memory).

The dictionary starts with the null string at position zero. As symbols are input
and encoded, strings are added to the dictionary at positions 1, 2, and so on. When
the next symbol x is read from the input, the dictionary is searched for an entry with
the one-symbol string x. If none is found, x is added to the next available position in
the dictionary, and the token (0,x) is output. This token indicates the string “null x”
(a concatenation of the null string and x). If an entry with x is found (at, say, position
37), the next symbol y is read, and the dictionary is searched for an entry containing
the two-symbol string xy. If none is found, then string xy is added to the next available
position in the dictionary, and the token (37,y) is output. This token indicates the
string xy, since 37 is the dictionary position of string x. The process continues until the
end of the input is reached.

96 3. Dictionary Methods

In general, the current symbol is read and becomes a one-symbol string. The
encoder then tries to find it in the dictionary. If the symbol is found in the dictionary,
the next symbol is read and is concatenated with the first to form a two-symbol string
that the encoder then tries to locate in the dictionary. As long as those strings are found
in the dictionary, more symbols are read and concatenated to the string. At a certain
point the string is not found in the dictionary, so the encoder adds it to the dictionary and
outputs a token with the last dictionary match as its first field, and the last symbol of the
string (the one that caused the search to fail) as its second field. Table 3.2 lists the first
14 steps in encoding the string sir_sid eastman easily teases sea; sickseals.

Dictionary Token Dictionary Token
0 null

1 s (0,s) 8 a (0,a)
2 i (0,1) 9 st (1,t)
3 r (0,r) 10 m (0,m)
4 | (0,u) 11 an (8,n)
5 si (1,1) 12 Lea (7,2)
6 d (0,d) 13 sil (5,1)
7 Le (4e) 14y 0y)

Table 3.2: First 14 Encoding Steps in LZ78.

Exercise 3.2: Complete Table 3.2.

In each step, the string added to the dictionary is the one that is being encoded,
minus its last symbol. In a typical compression run, the dictionary starts with short
strings, but as more text is being input and processed, longer and longer strings are
added to it. The size of the dictionary can either be fixed or may be determined by the
size of the available memory each time the LZ78 compression program is executed. A
large dictionary may contain more strings and thus allow for longer matches, but the
trade-off is longer pointers (which implies longer tokens) and slower dictionary search.

A good data structure for the dictionary is a tree, but not a binary tree. The tree
starts with the null string as the root. All the strings that start with the null string
(strings for which the token pointer is zero) are added to the tree as children of the root.
In the example above those are s, i, r, ., d, a, m, y, e, ¢, and k. Each of them becomes
the root of a subtree as shown in Figure 3.3. For example, all the strings that start with
s (the four strings si, sil, st, and s(eof)) constitute the subtree of node s.

Assuming an alphabet of 8-bit symbols, there are 256 different symbols, so in prin-
ciple, each node in the tree could have up to 256 children. The process of adding a child
to a tree node should therefore be dynamic. When the node is first created, it has no
children and it should not reserve any memory space for them. As a child is added to
the node, memory space should be claimed for it. Recall that no nodes are ever deleted,
so there is no need to reclaim memory space, which simplifies the memory management
task somewhat.

Such a tree makes it easy to search for a string and to add strings. To search for
sil, for example, the program looks for the child s of the root, then for the child i of

3.1L278 97

null
\ I TR T A L
4- 8-a 22-c 6-d 16-e 2-i 23-k 10m 3-r 1-s 1l4-y
| |
19-s T7-e 15-t 25‘—1 1‘1—11 17‘—s 2‘O—a 18‘—5 26-eof 5-i 9-t
24-e 21-i 12-a 13-1

Figure 3.3: An LZ78 Dictionary Tree.

s, and so on, going down the tree. Here are some examples:

1. When the s of sid is input in step 5, the encoder finds node “1-s” in the tree as a
child of “null”. It then inputs the next symbol i, but node s does not have a child i (in
fact, it has no children at all at this point), so the encoder adds node “5-i” as a child
of “1-s”, which effectively adds the string si to the tree.

2. When the blank space between eastman and easily is input in step 12, a similar
situation occurs. The encoder finds node “4-.”, inputs e, finds “7-e”, inputs a, but

“7-e” does not have “a” as a child, so the encoder adds node “12-a”, which effectively
adds the string “_ea” to the tree.

A tree of the type described here is called a trie (pronounced try). In general, a
trie is a tree in which the branching structure at any level is determined by just part
of a data item, not the entire item. In the case of LZ78, each string added to the tree
effectively adds just one symbol, and does that by adding a branch.

Since the total size of the tree is limited, it may fill up during compression. This, in
fact, happens all the time except when the input is unusually small. The original LZ78
method does not specify what to do in such a case, so we list a few possible solutions.

1. The simplest solution is to freeze the dictionary at that point. No new nodes should
be added, the tree becomes a static dictionary, but it can still be used to encode strings.
2. Delete the entire tree once it gets full and start with a new, empty tree. This solution
effectively breaks the input into blocks, each with its own dictionary. If the content of
the input varies from block to block, this solution will produce good compression, since
it will eliminate a dictionary with strings that are unlikely to be used in the future. We
can say that this solution implicitly assumes that future symbols will benefit more from
new data than from old (the same implicit assumption used by LZ77).

3. The UNIX compress utility uses a more complex solution.

4. When the dictionary is full, delete some of the least-recently-used entries, to make
room for new ones. Unfortunately, there is no simple, fast algorithm to decide which
entries to delete, and how many.

The LZ78 decoder works by building and maintaining the dictionary in the same
way as the encoder. It is therefore more complex than the LZ77 decoder.

98 3. Dictionary Methods

4@ Intermezzo <>

The LZW Trio. Having one’s name attached to a scientific discovery, technique,
or phenomenon is considered a special honor in science. Having one’s name associated
with an entire field of science is even more so. This is what happened to Jacob Ziv
and Abraham Lempel. In the 1970s these two researchers developed the first methods,
LZ77 and LZ78, for dictionary-based compression. Their ideas have been a source of
inspiration to many researchers, who generalized, improved, and combined them with
RLE and statistical methods to form many popular lossless compression methods for
text, images, and audio. More than a dozen such methods are described in detail in
[Salomon 07]. Of special interest is the popular LZW algorithm, partly devised by
Terry Welch (Section 3.2), which has extended LZ78 and made it useful in practical
applications.

Abraham Lempel and Jacob Ziv.

Gamblers like the phrase “heads I win, tails I lose” (if you hear this, make sure you
did not hear “heads I win, tails you lose”). Mr G. Ambler, a veteran gambler, decided to
try a simple scheme, one where even he could easily figure out his winnings and losses.
The principle is to always gamble half the money he has in his pocket. Thus, if he starts
with an amount a and wins, he ends up with 1.5a. If next he loses, he pays out half that
and is left with 0.75a. Assuming that he plays g games and wins half the time, what is
his chance of making a net profit?

3.2 LZW

LZW is a popular variant of LZ78, developed by Terry Welch in 1984 ([Welch 84] and
[Phillips 92]). Its main feature is eliminating the second field of a token. An LZW token
consists of just a pointer to the dictionary. To best understand LZW, we will temporarily
forget that the dictionary is a tree, and will think of it as an array of variable-size strings.
The LZW method starts by initializing the dictionary to all the symbols in the alphabet.
In the common case of 8-bit symbols, the first 256 entries of the dictionary (entries 0
through 255) are occupied before any data is input. Because the dictionary is initialized,
the next input character will always be found in the dictionary. This is why an LZW
token can consist of just a pointer and does not have to contain a character code as in
LZ77 and LZ78.

3.2 Lzw 99

(LZW was patented and for many years its use required a license. This issue is
discussed in [Salomon 07] as well as in many places on the Internet.)

The principle of LZW is that the encoder inputs symbols one by one and accu-
mulates them in a string I. After each symbol is input and is concatenated to I, the
dictionary is searched for string I. As long as I is found in the dictionary, the process
continues. At a certain point, appending the next symbol x causes the search to fail;
string I is in the dictionary but string Ix (symbol x concatenated to I) is not. At this
point the encoder (1) outputs the dictionary pointer that points to string I, (2) saves
string Ix (which is now called a phrase) in the next available dictionary entry, and (3)
initializes string I to symbol x. To illustrate this process, we again use the text string
sir_sid eastman easily teases sea sick_seals. The steps are as follows:

0. Initialize entries 0—255 of the dictionary to all 256 8-bit bytes.

1. The first symbol s is input and is found in the dictionary (in entry 115, since this is
the ASCII code of s). The next symbol i is input, but si is not found in the dictionary.
The encoder performs the following: (1) outputs 115, (2) saves string si in the next
available dictionary entry (entry 256), and (3) initializes I to the symbol i.

2. The r of sir is input, but string ir is not in the dictionary. The encoder (1) outputs
105 (the ASCII code of i), (2) saves string ir in the next available dictionary entry
(entry 257), and (3) initializes I to the symbol r.

Table 3.4 summarizes all the steps of this process. Table 3.5 shows some of the
original 256 entries in the LZW dictionary plus the entries added during encoding of the
string above. The complete output file is (only the numbers are output, not the strings
in parentheses) as follows:

115 (s), 105 (1), 114 (r), 32 (), 256 (s1), 100 (d), 32 (1), 101 (e), 97 (a), 115 (s), 116
(t), 109 (m), 97 (a), 110 (n), 262 (ue), 264 (as), 105 (1), 108 (1), 121 (y), 32 (u), 116
(t), 263 (ea), 115 (s), 101 (e), 115 (s), 259 (us), 263 (ea), 259 (us), 105 (i), 99 (c), 107
(k), 280 (use), 97 (a), 108 (1), 115 (s), eof.

Figure 3.6 is a pseudo-code listing of the algorithm. We denote by A the empty
string, and by <<a,b>> the concatenation of strings a and b.

The line “append <<di,ch>> to the dictionary” is of special interest. It is clear
that in practice, the dictionary may fill up. This line should therefore include a test for
a full dictionary, and certain actions for the case where it is full.

Since the first 256 entries of the dictionary are occupied right from the start, pointers
to the dictionary have to be longer than 8 bits. A simple implementation would typically
use 16-bit pointers, which allow for a 64 K-entry dictionary (where 64 K = 216 = 65,536).
Naturally, such a dictionary will fill up very quickly in all but the smallest compression
jobs. The same problem exists with LZ78, and any solutions used with LZ78 can also
be used with LZW. Another interesting fact about LZW is that strings in the dictionary
become only one character longer at a time. It therefore takes a long time to end up with
long strings in the dictionary, and thus with a chance to achieve really good compression.
We say that LZW adapts slowly to its input data.

Exercise 3.3: Use LZW to encode the string alf eats alfalfa. Show the encoder
output and the new entries appended to the dictionary.

100 3. Dictionary Methods

In New In New
I dict? entry Output I dict? entry Output
s Y y Y
si N 256-si 115 (s) y N 274y 121 (y)
i Y U Y
ir N 257-ir 105 (4) st N 275t 32 (L)
r Y t Y
r N 258-r 114 (r) te N 276-te 116 (t)
U Y e Y
LS N 259-_s 32 () ea Y
S Y eas N 277-eas 263 (ea)
si Y s Y
sid N 260-sid 256 (si) se N 278-se 115 (s)
d Y e Y
d N 2614 100 (d) es N 279-es 101 (e)
U Y s Y
Le N 262-_e 32 (u) s N 280-s 115 (s)
e Y U Y
ea N 263-ea 101 (e) us Y
a Y Lse N 281-_se 259 (Us)
as N 264-as 97 (a) e Y
s Y ea Y
st N 265-st 115 (s) ea N 282-ea 263 (ea)
t Y U Y
tm N 266-tm 116 (t) us Y
m Y usi N 283-usi 259 (us)
ma N 267ma 109 (m) i Y
a Y ic N 284-ic 105 (1)
an N 268-an 97 (a) c Y
n Y ck N 285ck 99 (c)
n N 269n 110 (n) k Y
LY X N 286k 107 (k)
e Y U Y
Lea N 270-uea 262 (Le) LS Y
a Y use Y
as Y Lsea N 287-,sea 281 (,se)
asi N 271-asi 264 (as) a Y
i Y al N 288-al 97 (a)
il N 272441 105 (i) 1 Y
1 Y 1s N 289-1s 108 (1)
ly N 2731y 108 (1) s Y
s,eof N 115 (s)

Table 3.4: Encoding sir sid eastman easily teases sea sick seals.

3.2 LZW

0 NULL 110 n 262 e 276 te

1 SOH .. 263 ea 277 eas
... 115 s 264 as 278 se
32 SP 116 t 265 st 279 es
e .. 266 tm 280 s
97 a 121 vy 267 ma 281 _se
98 b ... 268 an 282 ea
99 c 255 255 269 n 283 _si
100 d 256 si 270 _ea 284 ic
101 e 257 ir 271 asi 285 ¢k
. 258 r 272 il 286 k
107 k 259 s 273 1y 287 Usea
108 1 260 sid 274y 288 al
109 m 261 d 275 it 280 1s

Table 3.5: An LZW Dictionary.

NP

<
N

for i:=0 to 255 do
append i as a 1-symbol string to the dictionary;
append A to the dictionary;
di:=dictionary index of A;
repeat
read(ch);
if <<di,ch>> is in the dictionary then
di:=dictionary index of <<di,ch>>;
else
output (di) ;
append <<di,ch>> to the dictiomnary;
di:=dictionary index of ch;
endif;
until end-of-input;

Figure 3.6: The LZW Algorithm.

101

102 3. Dictionary Methods

Exercise 3.4: Analyze the LZW compression of the string aaaa. . ..

A dirty icon (anagram of “dictionary”) ‘

3.2.1 LZW Decoding

To understand how the LZW decoder works, we recall the three steps the encoder
performs each time it writes something on the output. They are (1) it outputs the
dictionary pointer that points to string I, (2) it saves string Ix in the next available
entry of the dictionary, and (3) it initializes string I to symbol x.

The decoder starts with the first entries of its dictionary initialized to all the symbols
of the alphabet (normally 256 symbols). It then reads its input (which consists of
pointers to the dictionary) and uses each pointer to retrieve uncompressed symbols from
its dictionary and write them on its output. It also builds its dictionary in the same way
as the encoder (this fact is usually expressed by saying that the encoder and decoder
are synchronized, or that they work in lockstep).

In the first decoding step, the decoder inputs the first pointer and uses it to retrieve
a dictionary item I. This is a string of symbols, and it is written on the decoder’s output.
String Ix needs to be saved in the dictionary, but symbol x is still unknown; it will be
the first symbol in the next string retrieved from the dictionary.

In each decoding step after the first, the decoder inputs the next pointer, retrieves
the next string J from the dictionary, writes it on the output, isolates its first symbol x,
and saves string Ix in the next available dictionary entry (after checking to make sure
string Ix is not already in the dictionary). The decoder then moves J to I and is ready
for the next step.

In our “sir sid...” example, the first pointer that’s input by the decoder is 115.
This corresponds to the string s, which is retrieved from the dictionary, gets stored in
I, and becomes the first item written on the decoder’s output. The next pointer is 105,
so string i is retrieved into J and is also written on the output. J’s first symbol is
concatenated with I, to form string si, which does not exist in the dictionary, and is
therefore added to it as entry 256. Variable J is moved to I, so I is now the string i.
The next pointer is 114, so string r is retrieved from the dictionary into J and is also
written on the output. J’s first symbol is concatenated with I, to form string ir, which
does not exist in the dictionary, and is added to it as entry 257. Variable J is moved to
I, so I is now the string r. The next step reads pointer 32, writes ., on the output, and
saves string r,.

”

Exercise 3.5: Decode the string alf eats alfalfa by using the encoding results from
Exercise 3.3.

Exercise 3.6: Assume a two-symbol alphabet with the symbols a and b. Show the first
few steps for encoding and decoding the string “ababab...”.

3.2.2 LZW Dictionary Structure

Up until now, we have assumed that the LZW dictionary is an array of variable-size
strings. It turns out that a trie is an ideal data structure for a practical implementation
of such a dictionary. The first step in understanding such an implementation is to recall

3.2 Lzw 103

how the encoder works. It inputs symbols and concatenates them into a variable I as
long as the string in I is found in the dictionary. At a certain point the encoder inputs
the first symbol x, which causes the search to fail (string Ix is not in the dictionary).
It then adds Ix to the dictionary. This means that each string added to the dictionary
effectively adds just one new symbol, x. (Phrased another way; for each dictionary
string of more than one symbol, there exists a “parent” string in the dictionary that’s
one symbol shorter.)

A tree similar to the one used by LZ78 is therefore a good data structure, because
adding string Ix to such a tree is done by adding one node with x. The main problem
is that each node in the LZW tree may have many children (this is a multiway tree, not
a binary tree). Imagine the node for the letter a in entry 97. Initially it has no children,
but if the string ab is added to the tree, node 97 receives one child. Later, when, say,
the string ae is added, node 97 receives a second child, and so on. The data structure
for the tree should therefore be designed such that a node could have any number of
children, but without having to reserve any memory for them in advance.

One way of designing such a data structure is to house the tree in an array of nodes,
each a structure with two fields: a symbol and a pointer to the parent node. A node
has no pointers to any child nodes. Moving down the tree, from a node to one of its
children, is done by a hashing process in which the pointer to the node and the symbol
of the child are hashed to create a new pointer.

Suppose that string abc has already been input, symbol by symbol, and has been
stored in the tree in the three nodes at locations 97, 266, and 284. Following that, the
encoder has just input the next symbol d. The encoder now searches for string abcd, or,
more specifically, for a node containing the symbol d whose parent is at location 284.
The encoder hashes the 284 (the pointer to string abc) and the 100 (ASCII code of d)
to create a pointer to some node, say, 299. The encoder then examines node 299. There
are three possibilities:

1. The node is unused. This means that abcd is not yet in the dictionary and should
be added to it. The encoder adds it to the tree by storing the parent pointer 284 and
ASCII code 100 in the node. The result is the following:

Node
Address : 97 266 284 299
Contents : (-:a) (97:b) (266:c) (284:d)
Represents: a ab abc abcd

2. The node contains a parent pointer of 284 and the ASCII code of d. This means
that string abcd is already in the tree. The encoder inputs the next symbol, say e, and
searches the dictionary tree for string abcde.
3. The node contains something else. This means that another hashing of a pointer
and an ASCII code has resulted in 299, and node 299 already contains information from
another string. This is called a collision, and it can be dealt with in several ways. The
simplest way to deal with a collision is to increment pointer 299 and examine nodes 300,
301, ... until an unused node is found, or until a node with (284:d) is found.

In practice, we build nodes that are structures with three fields, a pointer to the
parent node, the pointer (or index) created by the hashing process, and the code (nor-

104 3. Dictionary Methods

mally ASCII) of the symbol contained in the node. The second field is necessary because
of collisions. A node can therefore be illustrated by

parent

index
symbol

We illustrate this data structure using string ababab... of Exercise 3.6. The
dictionary is an array dict where each entry is a structure with the three fields parent,
index, and symbol. We refer to a field by, for example, dict [pointer] .parent, where
pointer is an index to the array. The dictionary is initialized to the two entries a and
b. (To keep the example simple we use no ASCII codes. We assume that a has code 1
and b has code 2.) The first few steps of the encoder are as follows:

Step 0: Mark all dictionary locations from 3 on as unused.

A
2]][]
2l () 1O

Step 1: The first symbol a is input into variable I. What is actually input is the code
of a, which in our example is 1, so I = 1. Since this is the first symbol, the encoder
assumes that it is in the dictionary and so does not perform any search.

Step 2: The second symbol b is input into J, so J = 2. The encoder has to search
for string ab in the dictionary. It executes pointer:=hash(I,J). Let’s assume that
the result is 5. Field dict[pointer].index contains “unused”, since location 5 is still
empty, so string ab is not in the dictionary. It is added by executing

dict[pointer].parent:=I;
dict[pointer].index:=pointer;
dict[pointer].symbol:=J;

with pointer = 5. J is moved into I, so I = 2.

A
2] [-]{-][5].
2] (o) (] o)

Step 8: The third symbol a is input into J, so J = 1. The encoder has to search for string
ba in the dictionary. It executes pointer:=hash(I,J). Let’s assume that the result is
8. Field dict[pointer].index contains “unused”, so string ba is not in the dictionary.
It is added as before by executing

dict[pointer] .parent:=I;
dict[pointer].index:=pointer;
dict[pointer].symbol:=J;

with pointer = 8. J is moved into I, so I = 1.

AVAEI 2]]
] [2][-][][] [-}[-][8]]-] ..
=) (o] 10 el L=l O

Step 4: The fourth symbol b is input into J, so J=2. The encoder has to search for
string ab in the dictionary. It executes pointer:=hash(I,J). We know from step 2 that

3.2 Lzw 105

the result is 5. Field dict [pointer] .index contains 5, so string ab is in the dictionary.
The value of pointer is moved into I, so I =5.

Step 5: The fifth symbol a is input into J, so J = 1. The encoder has to search for string
aba in the dictionary. It executes as usual pointer:=hash(I,J). Let’s assume that the
result is 8 (a collision). Field dict [pointer].index contains 8, which looks good, but
field dict [pointer] .parent contains 2 instead of the expected 5, so the hash function
knows that this is a collision and string aba is not in dictionary entry 8. It increments
pointer as many times as necessary until it finds a dictionary entry with index = 8
and parent = 5 or until it finds an unused entry. In the former case, string aba is in the
dictionary, and pointer is moved to I. In the latter case aba is not in the dictionary,
and the encoder saves it in the entry pointed at by pointer, and moves J to I.

A 1[2115] [
1) 2] [=] Bl [} [8][8}]-]- -
[a] o] (1 o] ([l fal

Example: The 15 hashing steps for encoding the string alf eats alfalfa are
shown below. The encoding process itself is illustrated in detail in the answer to Exer-
cise 3.3. The results of the hashing are arbitrary; they are not the results produced by a
real hash function. The 12 trie nodes constructed for this string are shown in Figure 3.7.
Hash(1,97) — 278. Array location 278 is set to (97,278,1).

Hash(£,108) — 266. Array location 266 is set to (108,266,).

Hash(,,102) — 269. Array location 269 is set to (102,269,.,).

Hash(e,32) — 267. Array location 267 is set to (32,267, e).

Hash(a,101) — 265. Array location 265 is set to (101,265, a).

Hash(t,97) — 272. Array location 272 is set to (97,272, t).

Hash(s,116) — 265. A collision! Skip to the next available location, 268, and set it
to (116,265, s). This is why the index needs to be stored.

8. Hash(y,,115) — 270. Array location 270 is set to (115,270,).

9. Hash(a,32) — 268. A collision! Skip to the next available location, 271, and set it to
(32,268, a).

10. Hash(1,97) — 278. Array location 278 already contains index 278 and symbol 1
from step 1, so there is no need to store anything else or to add a new trie entry.

11. Hash(£,278) — 276. Array location 276 is set to (278,276, f).

12. Hash(a,102) — 274. Array location 274 is set to (102,274, a).

13. Hash(1,97) — 278. Array location 278 already contains index 278 and symbol 1
from step 1, so there is no need to do anything.

14. Hash(£,278) — 276. Array location 276 already contains index 276 and symbol £
from step 11, so there is no need to do anything.

15. Hash(a,276) — 274. A collision! Skip to the next available location, 275, and set it
to (276,274, a).

Readers who have carefully followed the discussion up to this point will be happy to
learn that the LZW decoder’s use of the dictionary tree-array is simple and no hashing is
needed. The decoder starts, like the encoder, by initializing the first 256 array locations.
It then reads pointers from its input and uses each to locate a symbol in the dictionary.

In the first decoding step, the decoder inputs the first pointer and uses it to retrieve
a dictionary item I. This is a symbol that is now written by the decoder on its output.

oo N

106 3. Dictionary Methods

IS EIS NS

2712072121 2][2][2]]2] [27][2] (2]
66|66 6]T[T7|T TI7 7
L5 67T 8I[9]LO0J[1][2] 14][5] L7]
A A A A A A A A
M8 [A A A A
|- {1266 - 1 - |- J|-|]l-|]- i) B -
T | N S O | B
o8 [/ mo2[[/][7 /17 /
- |[266| - || - 269 - || - || - | Il L= |
f U
/108 [32] [/ o2 [/[/A /]
- @E - @;:; (Il | L= |
f e U
o1 108 [32] [/ |[102 [/][/] [/][/] [/ /][71[/]
265 1266 [267 | - | 269/ - || - || - | -
a|lf e U L L]
108 /]
/]
/]

=EISEIS IS
~ S P]

~]

]
]
~ [

IS NSNS NSNS NS H:H IS EESEES EES EESEEE

La (£][e][s][u]lullalle] L][]

o108 321116 102/ 115 [32][97] 102][/|

1265 [266| [267| 265| 269| 270| 268 272/ | - | [274 | - | -

La LE e][s | [ullu]la]le]l [[a] I[£][]
o108 32116 102/ 115 [32][97] 102 [276] R78|[/ |
1265] [266| [267| 265| 269| 270 268 [272 | - | [274] [274| 276/ | - | 278
BEBBEBENRREBEEBRREN

Figure 3.7: Growing an LZW Trie for alf eats alfalfa.

| e

EIEE

EEE R EHEE

=

/7]

3.2 Lzw 107

String Ix needs to be saved in the dictionary, but symbol x is still unknown; it will be
the first symbol in the next string retrieved from the dictionary.

In each decoding step after the first, the decoder inputs the next pointer and uses
it to retrieve the next string J from the dictionary and write it on the output. If the
pointer is, say 8, the decoder examines field dict [8] .index. If this field equals 8, then
this is the right node. Otherwise, the decoder examines consecutive array locations until
it finds the right one.

Once the right tree node is found, the parent field is used to go back up the tree
and retrieve the individual symbols of the string in reverse order. The symbols are then
placed in J in the right order (see below), the decoder isolates the first symbol x of J, and
saves string Ix in the next available array location. (String I was found in the previous
step, so only one node, with symbol x, needs be added.) The decoder then moves J to
I and is ready for the next step.

Retrieving a complete string from the LZW tree therefore involves following the
pointers in the parent fields. This is equivalent to moving up the tree, which is why the
hash function is no longer needed.

Example: The previous example describes the 15 hashing steps in the encoding
of string alf eats alfalfa. The last step sets array location 275 to (276,274,a) and
writes 275 (a pointer to location 275) on the compressed file. When this file is read
by the decoder, pointer 275 is the last item input and processed by the decoder. The
decoder finds symbol a in the symbol field of location 275 (indicating that the string
stored at 275 ends with an a) and a pointer to location 276 in the parent field. The
decoder then examines location 276 where it finds symbol £ and parent pointer 278. In
location 278 the decoder finds symbol 1 and a pointer to 97. Finally, in location 97
the decoder finds symbol a and a null pointer. The (reversed) string is therefore afla.
There is no need for the decoder to do any hashing or to use the index fields.

The last point to discuss is string reversal. Two common approaches are outlined
here:

1. Use a stack. A stack is a common data structure in modern computers. It is an array
in memory that is accessed at one end only. At any time, the item that was last pushed
into the stack will be the first one to be popped out (last-in-first-out, or LIFO). Symbols
retrieved from the dictionary are pushed into the stack. When the last one has been
retrieved and pushed, the stack is popped, symbol by symbol, into variable J. When the
stack is empty, the entire string has been reversed. This is a common way to reverse a
string.

2. Retrieve symbols from the dictionary and concatenate them into J from right to left.
When done, the string will be stored in J in the right order. Variable J must be long
enough to accommodate the longest possible string, but then it has to be long enough
even when a stack is used.

Exercise 3.7: What is the longest string that can be retrieved from the LZW dictionary
during decoding?

Big Amy lives in London and works in a store on Oxford Street. In order to justify
her name, she is married to two men, neither of whom knows about the other. Thus, she
has to juggle her marital life carefully. Every day after work, she walks to the Oxford

108 3. Dictionary Methods

Circus underground station and takes either the Victoria line (cyan) south, to Brixton,
where one husband lives, or the Bakerloo line (brown) north, to Maida Vale, where
the other husband lives. Being a loving, impartial, and also a careful wife, she tries to
balance her visits so as not to prefer any husband over the other. To this end she gets
off work and arrives at the underground station at random times. In spite of this, she
finds herself at Maida Vale much more often than at Brixton. What could be a reason
for such imbalance?

3.3 Deflate: Zip and Gzip

Deflate is a popular compression method that was originally used in the well-known Zip
and Gzip software and has since been adopted by many applications, the most important
of which are (1) the HTTP protocol ([RFC1945 96] and [RFC2616 99]), (2) the PPP
compression control protocol ([RFC1962 96] and [RFC1979 96]), (3) the PNG (Portable
Network Graphics) and MNG (Multiple-Image Network Graphics) graphics file formats
([PNG 03] and [MNG 03]), and (4) Adobe’s PDF (Portable Document File) [PDF 01].

Deflate was developed by Philip Katz as a part of the Zip file format and imple-
mented in his PKZIP software [PKWare 03]. Both the ZIP format and the Deflate
method are in the public domain, which allowed implementations such as Info-ZIP’s
Zip and Unzip (essentially, PKZIP and PKUNZIP clones) to appear on a number of
platforms. Deflate is described in [RFC1951 96].

Phillip W. Katz was born in 1962. He received a bachelor’s
degree in computer science from the University of Wisconsin at
Madison. Always interested in writing software, he started working
in 1984 as a programmer for Allen-Bradley Co. developing pro-
grammable logic controllers for the industrial automation industry.
He later worked for Graysoft, another software company, in Milwau-
kee, Wisconsin. At about that time he became interested in data
compression and founded PKWare in 1987 to develop, implement,
and market software products such as PKarc and PKzip. For a
while, the company was very successful selling the programs as shareware.

Always a loner, Katz suffered from personal and legal problems, started drinking
heavily, and died on April 14, 2000 from complications related to chronic alcoholism.
He was 37 years old.

After his death, PKWare was sold, in March 2001, to a group of investors. They
changed its management and the focus of its business. PKWare currently targets
the corporate market, and emphasizes compression combined with encryption. Their
product line runs on a wide variety of platforms.

The most notable implementation of Deflate is zlib, a portable and free compression
library ([zlib 03] and [RFC1950 96]) by Jean-Loup Gailly and Mark Adler who designed
and implemented it to be free of patents and licensing requirements. This library (the
source code is available at [Deflate 03]) implements the ZLIB and GZIP file formats
([RFC1950 96] and [RFC1952 96]), which are at the core of most Deflate applications,
including the popular Gzip software.

3.3 Deflate: Zip and Gzip 109

Deflate is based on a variation of LZ77 combined with Huffman codes. We start
with a simple overview based on [Feldspar 03] and follow with a full description based
on [RFC1951 96].

The original LZ77 method (Section 1.3.1) tries to match the text in the look-ahead
buffer to strings already in the search buffer. In the example

search buffer look-ahead
...0ld]..the a..then...there...[the new...]...more

the look-ahead buffer starts with the string the ,, which can be matched to one of three
strings in the search buffer. The longest match has a length of 4. LZ77 writes tokens
on the compressed file, where each token is a triplet (offset, length, next symbol). The
third component is needed in cases where no string has been matched (imagine having
che instead of the in the look-ahead buffer) but it is part of every token, which reduces
the performance of LZ77. The LZ77 algorithm variation used in Deflate eliminates the
third component and writes a pair (offset, length) on the compressed file. When no
match is found, the unmatched character is written on the compressed file instead of a
token. Thus, the compressed data consists of three types of entities: literals (unmatched
characters), offsets (termed “distances” in the Deflate literature), and lengths. Deflate
actually writes Huffman codes on the compressed file for these entities, and it uses two
code tables—one for literals and lengths and the other for distances. This makes sense
because the literals are normally bytes and are therefore in the interval [0, 255], and the
lengths are limited by Deflate to 258. The distances, however, can be large numbers
because Deflate allows for a search buffer of up to 32 Kbytes.

Exercise 3.8: When no match is found, Deflate writes the unmatched character (in
raw format) on the compressed file instead of a token. Suggest an alternative.

When a pair (length, distance) is determined, the encoder searches the table of
literal/length codes to find the code for the length. This code (we later use the term
“edoc” for it) is then replaced by a Huffman code that’s written on the compressed file.
The encoder then searches the table of distance codes for the code of the distance and
writes that code (a special prefix code with a fixed, 5-bit prefix) on the compressed file.
The decoder knows when to expect a distance code, because it always follows a length
code.

The LZ77 variant used by Deflate defers the selection of a match in the following
way. Suppose that the two buffers contain

search buffer look-ahead
...0ld . .she needs. .then...there...[the new...|]...more input

The longest match is 3. Before selecting this match, the encoder saves the t from
the look-ahead buffer and starts a secondary match where it tries to match he new. ..
with the search buffer. If it finds a longer match, it outputs t as a literal, followed
by the longer match. There is also a 3-valued parameter that controls this secondary
match attempt. In the “normal” mode of this parameter, if the primary match was long
enough (longer than a preset parameter), the secondary match is reduced (it is up to the
implementor to decide how to reduce it). In the “high-compression” mode, the encoder

110 3. Dictionary Methods

always performs a full secondary match, thereby improving compression but spending
more time on selecting a match. In the “fast” mode, the secondary match is omitted.

Deflate compresses an input data file in blocks, where each block is compressed
separately. Blocks can have different lengths and the length of a block is determined by
the encoder based on the sizes of the various prefix codes used (their lengths are limited
to 15 bits) and by the memory available to the encoder (except that blocks in mode 1
are limited to 65,535 bytes of uncompressed data). The Deflate decoder must be able
to decode blocks of any size. Deflate offers three modes of compression, and each block
can be in any mode. The modes are as follows:

1. No compression. This mode makes sense for files or parts of files that are
incompressible (i.e., random) or already compressed, or for cases where the compression
software is asked to segment a file without compression. A typical case is a user who
wants to archive an 8 Gb file but has only a DVD “burner.” The user may want to
segment the file into two 4 Gb segments without compression. Commercial compression
software based on Deflate can use this mode of operation to segment the file. This mode
uses no code tables. A block written on the compressed file in this mode starts with a
special header indicating mode 1, followed by the length LEN of the data, followed by
LEN bytes of literal data. Notice that the maximum value of LEN is 65,535.

2. Compression with fixed code tables. Two code tables are built into the Deflate
encoder and decoder and are always used. This speeds up both compression and de-
compression and has the added advantage that the code tables don’t have to be written
on the compressed file. The compression performance, however, may suffer if the data
being compressed is statistically different from the data used to set up the code tables.
Literals and match lengths are located in the first table and are replaced by a code
(called “edoc”) that is, in turn, replaced by a prefix code that’s output to the com-
pressed file. Distances are located in the second table and are replaced by special prefix
codes that are output to the compressed file. A block written on the compressed file in
this mode starts with a special header indicating mode 2, followed by the compressed
data in the form of prefix codes for the literals and lengths, and special prefix codes for
the distances. The block ends with a single prefix code for end-of-block.

3. Compression with individual code tables generated by the encoder for the partic-
ular data that’s being compressed. A sophisticated Deflate encoder may gather statistics
about the data as it compresses blocks, and may be able to construct improved code
tables as it proceeds from block to block. There are two code tables, for literals/lengths
and for distances. They again have to be written on the output, and they are written
in compressed format. A block output by the encoder in this mode starts with a special
header, followed by (1) a compressed Huffman code table and (2) the two code tables,
each compressed by the Huffman codes that preceded them. This is followed by the
compressed data in the form of prefix codes for the literals, lengths, and distances, and
ends with a single code for end-of-block.

*What is the next integer in the sequence (12, 6), (6, 3), (10, ?)?
3.3.1 The Details

Each block starts with a 3-bit header where the first bit is 1 for the last block in the file
and 0 for all other blocks. The remaining two bits are 00, 01, or 10, indicating modes

3.3 Deflate: Zip and Gzip 111

1, 2, or 3, respectively. Notice that a block of compressed data does not always end on
a byte boundary. The information in the block is sufficient for the decoder to read all
the bits of the compressed block and recognize the end of the block. The 3-bit header
of the next block immediately follows the current block and may therefore be located at
any position in a byte on the compressed file.

The format of a block in mode 1 is as follows:

1. The 3-bit header 000 or 100.

2. The rest of the current byte is skipped, and the next four bytes contain LEN and
the one’s complement of LEN (as unsigned 16-bit numbers), where LEN is the number of
data bytes in the block. This is why the block size in this mode is limited to 65,535
bytes.

3. LEN data bytes.

The format of a block in mode 2 is different:
1. The 3-bit header 001 or 101.
2. This is immediately followed by the fixed prefix codes for literals/lengths and

the special prefix codes of the distances.
3. Code 256 (rather, its prefix code) designating the end of the block.

Extra Extra Extra
Code bits Lengths Code bits Lengths Code bits Lengths

257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
261 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66

Table 3.8: Literal/Length Edocs for Mode 2.

Edoc Bits Prefix codes
0-143 8 00110000-10111111
144-255 9 110010000-111111111
256279 7 0000000-0010111
280287 8 11000000-11000111

Table 3.9: Huffman Codes for Edocs in Mode 2.

Mode 2 uses two code tables: one for literals and lengths and the other for distances.
The codes of the first table are not what is actually written on the compressed file, so in

112 3. Dictionary Methods

order to remove ambiguity, the term “edoc” is used here to refer to them. Each edoc is
converted to a prefix code that’s output. The first table allocates edocs 0 through 255
to the literals, edoc 256 to end-of-block, and edocs 257285 to lengths. The latter 29
edocs are not enough to represent the 256 match lengths of 3 through 258, so extra bits
are appended to some of those edocs. Table 3.8 lists the 29 edocs, the extra bits, and
the lengths that they represent. What is actually written on the output is prefix codes
of the edocs (Table 3.9). Notice that edocs 286 and 287 are never created, so their prefix
codes are never used. We show later that Table 3.9 can be represented by the sequence
of code lengths

8,8,...,8,9,9,...,9.7,7,...,7,8,8,...,8, (3.1)

—— — —

144 112 24 8

but any Deflate encoder and decoder include the entire table instead of just the sequence
of code lengths. There are edocs for match lengths of up to 258, so the look-ahead buffer
of a Deflate encoder can have a maximum size of 258, but can also be smaller.

Examples. If a string of 10 symbols has been matched by the LZ77 algorithm,
Deflate prepares a pair (length, distance) where the match length 10 becomes edoc 264,
which is written as the 7-bit prefix code 0001000. A length of 12 becomes edoc 265
followed by the single bit 1. This is written as the 7-bit prefix code 0001010 followed by
1. A length of 20 is converted to edoc 269 followed by the two bits 01. This is written
as the nine bits 0001101|01. A length of 256 becomes edoc 284 followed by the five bits
11110. This is written as 11000101]11110. A match length of 258 is indicated by edoc
285 whose 8-bit prefix code is 11000110. The end-of-block edoc of 256 is written as seven
zero bits.

The 30 distance codes are listed in Table 3.10. They are special prefix codes with
fixed-size 5-bit prefixes that are followed by extra bits in order to represent distances
in the interval [1,32768]. The maximum size of the search buffer is therefore 32,768,
but it can be smaller. The table shows that a distance of 6 is represented by 00100|1, a
distance of 21 becomes the code 01000|101, and a distance of 8195 corresponds to code
11010]000000000010.

Extra Extra Extra
Code bits Distance Code bits Distance Code bits Distance

0 0 1 10 4 33-48 20 9 1025-1536
1 0 2 11 4 49-64 21 9 1537-2048
2 0 3 12 5 65-96 22 10 2049-3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129-192 24 11 4097-6144
5 1 7,8 15 6 193-256 25 11 6145-8192
6 2 9-12 16 7 257-384 26 12 8193-12288
7 2 13-16 17 7 385-512 27 12 12289-16384
8 3 17-24 18 8 513-768 28 13 1638524576
9 3 25-32 19 8 769-1024 29 13 24577-32768

Table 3.10: Thirty Prefix Distance Codes in Mode 2.

3.3 Deflate: Zip and Gzip 113

3.3.2 Format of Mode-3 Blocks

In mode 3, the encoder generates two prefix code tables, one for the literals/lengths and
the other for the distances. It uses the tables to encode the data that constitutes the
block. The encoder can generate the tables in any way. The idea is that a sophisticated
Deflate encoder may collect statistics as it inputs the data and compresses blocks. The
statistics are used to construct better code tables for later blocks. A naive encoder
may use code tables similar to the ones of mode 2 or may even not generate mode 3
blocks at all. The code tables have to be written on the output, and they are written
in a highly-compressed format. As a result, an important part of Deflate is the way it
compresses the code tables and outputs them. The main steps are (1) Each table starts
as a Huffman tree. (2) The tree is rearranged to bring it to a standard format where it
can be represented by a sequence of code lengths. (3) The sequence is compressed by
run-length encoding to a shorter sequence. (4) The Huffman algorithm is applied to the
elements of the shorter sequence to assign them Huffman codes. This creates a Huffman
tree that is again rearranged to bring it to the standard format. (5) This standard tree
is represented by a sequence of code lengths which are written, after being permuted
and possibly truncated, on the output. These steps are described in detail because of
the originality of this unusual method.

Recall that the Huffman code tree generated by the basic algorithm of Section 2.1
is not unique. The Deflate encoder applies this algorithm to generate a Huffman code
tree, then rearranges the tree and reassigns the codes to bring the tree to a standard
form where it can be expressed compactly by a sequence of code lengths. (The result is
reminiscent of the canonical Huffman codes of Section 2.2.6.) The new tree satisfies the
following two properties:

1. The shorter codes appear on the left, and the longer codes appear on the right
of the Huffman code tree.

2. When several symbols have codes of the same length, the (lexicographically)
smaller symbols are placed on the left.

The first example employs a set of six symbols A-F with probabilities 0.11, 0.14,
0.12, 0.13, 0.24, and 0.26, respectively. Applying the Huffman algorithm results in a
tree similar to the one shown in Figure 3.11a. The Huffman codes of the six symbols
are 000, 101, 001, 100, 01, and 11. The tree is then rearranged and the codes reassigned
to comply with the two requirements above, resulting in the tree of Figure 3.11b. The
new codes of the symbols are 100, 101, 110, 111, 00, and 01. The latter tree has the
advantage that it can be fully expressed by the sequence 3, 3, 3, 3, 2, 2 of the lengths of
the codes of the six symbols. The task of the encoder in mode 3 is therefore to generate
this sequence, compress it, and write it on the output.

The code lengths are limited to at most four bits each. Thus, they are integers in
the interval [0, 15], which implies that a code can be at most 15 bits long (this is one
factor that affects the Deflate encoder’s choice of block lengths in mode 3).

The sequence of code lengths representing a Huffman tree tends to have runs of
identical values and can have several runs of the same value. For example, if we assign
the probabilities 0.26, 0.11, 0.14, 0.12, 0.24, and 0.13 to the set of six symbols A-F, the
Huffman algorithm produces 2-bit codes for A and E and 3-bit codes for the remaining
four symbols. The sequence of these code lengths is 2, 3, 3, 3, 2, 3.

114 3. Dictionary Methods

0 0 1
0 1 0 1 0 1
0 1 1
A A e I
A C 0 00 01 A B C D
000 001

Figure 3.11: Two Huffman Trees.

The decoder reads a compressed sequence, decompresses it, and uses it to reproduce
the standard Huffman code tree for the symbols. We first show how such a sequence is
used by the decoder to generate a code table, then how it is compressed by the encoder.

Given the sequence 3, 3, 3, 3, 2, 2, the Deflate decoder proceeds in three steps as
follows:

1. Count the number of codes for each code length in the sequence. In our example,
there are no codes of length 1, two codes of length 2, and four codes of length 3.

2. Assign a base value to each code length. There are no codes of length 1, so
they are assigned a base value of 0 and don’t require any bits. The two codes of length
2 therefore start with the same base value 0. The codes of length 3 are assigned a
base value of 4 (twice the number of codes of length 2). The C code shown here (after
[RFC1951 96]) was written by Peter Deutsch. It assumes that step 1 leaves the number
of codes for each code length n in bl_count [n].

code = 0;

bl_count[0] = 0;

for (bits = 1; bits <= MAX_BITS; bits++)

{ code = (code + bl_count[bits-1]) << 1;
next codel[bits] = code;

}

3. Use the base value of each length to assign consecutive numerical values to all
the codes of that length. The two codes of length 2 start at 0 and are therefore 00 and
01. They are assigned to the fifth and sixth symbols E and F. The four codes of length
3 start at 4 and are therefore 100, 101, 110, and 111. They are assigned to the first four
symbols A-D. The C code shown here (by Peter Deutsch) assumes that the code lengths
are in tree[I].Len and it generates the codes in tree[I].Codes.

for (n = 0; n <= max code; n++)
{ len = tree[n].Len;
if (len '= 0)
{ tree[n].Code = next_code[len];
next_code[len] ++;

}
}

3.3 Deflate: Zip and Gzip 115

In the next example, the sequence 3, 3, 3, 3, 3, 2, 4, 4 is given and is used to
generate a table of eight prefix codes. Step 1 finds that there are no codes of length 1,
one code of length 2, five codes of length 3, and two codes of length 4. The length-1
codes are assigned a base value of 0. There are zero such codes, so the next group is also
assigned the base value of 0 (more accurately, twice 0, twice the number of codes of the
previous group). This group contains one code, so the next group (length-3 codes) is
assigned base value 2 (twice the sum 0+ 1). This group contains five codes, so the last
group is assigned base value of 14 (twice the sum 2 + 5). Step 3 simply generates the
five 3-bit codes 010, 011, 100, 101, and 110 and assigns them to the first five symbols.
It then generates the single 2-bit code 00 and assigns it to the sixth symbol. Finally,
the two 4-bit codes 1110 and 1111 are generated and assigned to the last two (seventh
and eighth) symbols.

Given the sequence of code lengths of Equation (3.1), we apply this method to
generate its standard Huffman code tree (listed in Table 3.9).

Step 1 finds that there are no codes of lengths 1 through 6, that there are 24 codes
of length 7, 152 codes of length 8, and 112 codes of length 9. The length-7 codes are
assigned a base value of 0. There are 24 such codes, so the next group is assigned the
base value of 2(0 4 24) = 48. This group contains 152 codes, so the last group (length-9
codes) is assigned base value 2(48 + 152) = 400. Step 3 simply generates the 24 7-bit
codes 0 through 23, the 152 8-bit codes 48 through 199, and the 112 9-bit codes 400
through 511. The binary values of these codes are listed in Table 3.9.

How many a dispute could have been deflated into a single paragraph if the disputants
had dared to define their terms.

—Aristotle

It is now clear that a Huffman code table can be represented by a short sequence
(termed SQ) of code lengths (herein called CLs). This sequence is special in that it
tends to have runs of identical elements, so it can be highly compressed by run-length
encoding. The Deflate encoder compresses this sequence in a three-step process where
the first step employs run-length encoding; the second step computes Huffman codes for
the run lengths and generates another sequence of code lengths (to be called CCLs) for
those Huffman codes. The third step writes a permuted, possibly truncated sequence of
the CCLs on the output.

Step 1. When a CL repeats more than three times, the encoder considers it a run.
It appends the CL to a new sequence (termed SSQ), followed by the special flag 16
and by a 2-bit repetition factor that indicates 3—6 repetitions. A flag of 16 is therefore
preceded by a CL and followed by a factor that indicates how many times to copy the
CL. Thus, for example, if the sequence to be compressed contains six consecutive 7’s, it is
compressed to 7, 16, 105 (the repetition factor 10 indicates five consecutive occurrences
of the same code length). If the sequence contains 10 consecutive code lengths of 6, it
will be compressed to 6, 16, 112, 16, 002 (the repetition factors 115 and 005 indicate six
and three consecutive occurrences, respectively, of the same code length).

Experience indicates that CLs of zero are very common and tend to have long runs.
(Recall that the codes in question are codes of literals/lengths and distances. Any given
data file to be compressed may be missing many literals, lengths, and distances.) This is
why runs of zeros are assigned the two special flags 17 and 18. A flag of 17 is followed by

116 3. Dictionary Methods

a 3-bit repetition factor that indicates 3-10 repetitions of CL 0. Flag 18 is followed by a
7-bit repetition factor that indicates 11-138 repetitions of CL 0. Thus, six consecutive
zeros in a sequence of CLs are compressed to 17, 115, and 12 consecutive zeros in an SQ
are compressed to 18, 01s.

The sequence of CLs is compressed in this way to a shorter sequence (to be termed
SSQ) of integers in the interval [0, 18]. An example may be the sequence of 28 CLs

4,4,4,4,4,3,3,3,6,6,6,6,6,6,6,6,6,6,0,0,0,0,0,0, 2,2, 2 2
that’s compressed to the 16-number SSQ
4, 16, 014, 3, 3, 3, 6, 16, 115, 16, 002, 17, 115, 2, 16, 004,
or, in decimal, 4,16, 1, 3, 3, 3, 6, 16, 3, 16, 0, 17, 3, 2, 16, 0.

Step 2. Prepare Huffman codes for the SSQ in order to compress it further. Our
example SSQ contains the following numbers (with their frequencies in parentheses):
0(2), 1(1), 2(1), 3(5), 4(1), 6(1), 16(4), 17(1). Its initial and standard Huffman trees
are shown in Figure 3.12a,b. The standard tree can be represented by the SSQ of eight
lengths 4, 5, 5, 1, 5, 5, 2, and 4. These are the lengths of the Huffman codes assigned
to the eight numbers 0, 1, 2, 3, 4, 6, 16, and 17, respectively.

Step 3. This SSQ of eight lengths is now extended to 19 numbers by inserting zeros
in the positions that correspond to unused CCLs.

9 10 11 12 13 14 15 16 17 18
0o 0 0 0 0O 0o 0 2 4 0

Position: 0 1 2 3 4 5 6 7 8
CCL: 455150500

Next, the 19 CCLs are permuted according to

Position: 16 17 18 0 8 7 9 6 10 5 11 4 12 3 13 2 14 1 15
CCL: 2 4 040005 00 05 01 05 05 0

The reason for the permutation is to end up with a sequence of 19 CCLs that’s likely to
have trailing zeros. The SSQ of 19 CCLs minus its trailing zeros is written on the output,
preceded by its actual length, which can be between 4 and 19. Each CCL is written
as a 3-bit number. In our example, there is just one trailing zero, so the 18-number
sequence 2, 4, 0, 4, 0, 0, 0, 5,0, 0,0, 5,0, 1, 0, 5, 0, 5 is written on the output as the
final, compressed code of one prefix-code table. In mode 3, each block of compressed
data requires two prefix-code tables, so two such sequences are written on the output.

o> S® o
| I | 01 10 |J—|
0(%)?) @ @ @ @Q%nl 1?80 1%? @ @ @ @

00010 00011 00100 00101 11100 11101 11110 11111

(a) (b)

Figure 3.12: Two Huffman Trees for Code Lengths.

A reader finally reaching this point (sweating profusely with such deep concentration
on so many details) may respond with the single word “insane.” This scheme of Phil

3.3 Deflate: Zip and Gzip 117

Katz for compressing the two prefix-code tables per block is devilishly complex and hard
to follow, but it works!
The format of a block in mode 3 is as follows:

1. The 3-bit header 010 or 110.

2. A 5-bit parameter HLIT indicating the number of codes in the literal /length code
table. This table has codes 0-256 for the literals, code 256 for end-of-block, and the
30 codes 257286 for the lengths. Some of the 30 length codes may be missing, so this
parameter indicates how many of the length codes actually exist in the table.

3. A 5-bit parameter HDIST indicating the size of the code table for distances. There
are 30 codes in this table, but some may be missing.

4. A 4-bit parameter HCLEN indicating the number of CCLs (there may be between
4 and 19 CCLs).

5. A sequence of HCLEN + 4 CCLs, each a 3-bit number.

6. A sequence SQ of HLIT 4 257 CLs for the literal/length code table. This SQ is
compressed as explained earlier.

7. A sequence SQ of HDIST + 1 CLs for the distance code table. This SQ is
compressed as explained earlier.

8. The compressed data, encoded with the two prefix-code tables.

9. The end-of-block code (the prefix code of edoc 256).

Each CCL is written on the output as a 3-bit number, but the CCLs are Huffman
codes of up to 19 symbols. When the Huffman algorithm is applied to a set of 19
symbols, the resulting codes may be up to 18 bits long. It is the responsibility of the
encoder to ensure that each CCL is a 3-bit number and none exceeds 7. The formal
definition [RFC1951 96] of Deflate does not specify how this restriction on the CCLs is
to be achieved.

3.3.3 The Hash Table

This short section discusses the problem of locating a match in the search buffer. The
buffer is 32 Kb long, so a linear search is too slow. Searching linearly for a match to
any string requires an examination of the entire search buffer. If Deflate is to be able to
compress large data files in reasonable time, it should use a sophisticated search method.
The method proposed by the Deflate standard is based on a hash table. This method is
strongly recommended by the standard, but is not required. An encoder using a different
search method is still compliant and can call itself a Deflate encoder. Those unfamiliar
with hash tables should consult any text on data structures.

If it wasn’t for faith, there would be no living in this world; we couldn’t even eat hash
with any safety.

—Josh Billings

Instead of separate look-ahead and search buffers, the encoder should have a single,
32 Kb buffer. The buffer is filled up with input data and initially all of it is a look-ahead
buffer. In the original LZ77 method, once symbols have been examined, they are moved
into the search buffer. The Deflate encoder, in contrast, does not move the data in its
buffer and instead moves a pointer (or a separator) from left to right, to indicate the
boundary between the look-ahead and search buffers. Short, 3-symbol strings from the
look-ahead buffer are hashed and added to the hash table. After hashing a string, the

118 3. Dictionary Methods

encoder examines the hash table for matches. Assuming that a symbol occupies n bits,
a string of three symbols can have values in the interval [0,23" — 1]. If 23" — 1 isn’t
too large, the hash function can return values in this interval, which tends to minimize
the number of collisions. Otherwise, the hash function can return values in a smaller
interval, such as 32 Kb (the size of the Deflate buffer).

We demonstrate the principles of Deflate hashing with the 17-symbol string

abbaabbaabaabaaaa
12345678901234567

Initially, the entire 17-location buffer is the look-ahead buffer and the hash table is
empty
012345678
[0[oTofolofool0]...
We assume that the first triplet abb hashes to 7. The encoder outputs the raw
symbol a, moves this symbol to the search buffer (by moving the separator between the
two buffers to the right), and sets cell 7 of the hash table to 1.

a|bbaabbaabaabaaaa 012345678
1 2345678901234567 [o[ofofofoToo]1]...

The next three steps hash the strings bba, baa, and aab to, say, 1, 5, and 0. The
encoder outputs the three raw symbols b, b, and a, moves the separator, and updates
the hash table as follows:

abbalabbaabaabaaaa 0123456738
1234 5678901234567 [4[2]o]o]0]3]0]1]...

Next, the triplet abb is hashed, and we already know that it hashes to 7. The
encoder finds 1 in cell 7 of the hash table, so it looks for a string that starts with abb at
position 1 of its buffer. It finds a match of size 6, so it outputs the pair (5 — 1,6). The
offset (4) is the difference between the start of the current string (5) and the start of
the matching string (1). There are now two strings that start with abb, so cell 7 should
point to both. It therefore becomes the start of a linked list (or chain) whose data items
are 5 and 1. Notice that the 5 precedes the 1 in this chain, so that later searches of
the chain will find the 5 first and will therefore tend to find matches with the smallest
offset, because those have short Huffman codes.

abbaa|bbaabaabaaaa 012345678
12345 678901234567 [4[2]ofo]o3]0] I...

(5] H1[0]

Six symbols have been matched at position 5, so the next position to consider is
645 = 11. While moving to position 11, the encoder hashes the five 3-symbol strings it
finds along the way (those that start at positions 6 through 10). They are bba, baa, aab,
aba, and baa. They hash to 1, 5, 0, 3, and 5 (we arbitrarily assume that aba hashes to
3). Cell 3 of the hash table is set to 9, and cells 0, 1, and 5 become the starts of linked
chains.

k-

abbaabbaablaabaaaa | 0 |

1234567890 1234567 i

=

2345678
[o[9]o[[0 I...

L
-+ [5] H1]0]

Continuing from position 11, string aab hashes to 0. Following the chain from cell
0, we find matches at positions 4 and 8. The latter match is longer and matches the
5-symbol string aabaa. The encoder outputs the pair (11 — 8,5) and moves to position

(PR

Chapter Summary 119

11 4+ 5 = 16. While doing so, it also hashes the 3-symbol strings that start at positions
12, 13, 14, and 15. Each hash value is added to the hash table. (End of example.)

It is clear that the chains can become very long. An example is an image file with
large uniform areas where many 3-symbol strings will be identical, will hash to the same
value, and will be added to the same cell in the hash table. Since a chain must be
searched linearly, a long chain defeats the purpose of a hash table. This is why Deflate
has a parameter that limits the size of a chain. If a chain exceeds this size, its oldest
elements should be truncated. The Deflate standard does not specify how this should
be done and leaves it to the discretion of the implementor. Limiting the size of a chain
reduces the compression quality but can reduce the compression time significantly. In
situations where compression time is unimportant, the user can specify long chains.

Also, selecting the longest match may not always be the best strategy; the offset
should also be taken into account. A 3-symbol match with a small offset may eventually
use fewer bits (once the offset is replaced with a variable-length code) than a 4-symbol
match with a large offset.

Exercise 3.9: Hashing 3-byte sequences prevents the encoder from finding matches of
length 1 and 2 bytes. Is this a serious limitation?

3.3.4 Conclusions

Deflate is a general-purpose lossless compression algorithm that has proved valuable over
the years as part of several popular compression programs. The method requires memory
for the look-ahead and search buffers and for the two prefix-code tables. However, the
memory size needed by the encoder and decoder is independent of the size of the data or
the blocks. The implementation is not trivial, but is simpler than that of some modern
methods such as JPEG 2000 or MPEG. Compression algorithms that are geared for
specific types of data, such as audio or video, may perform better than Deflate on such
data, but Deflate normally produces compression factors of 2.5 to 3 on text, slightly
smaller for executable files, and somewhat bigger for images. Most important, even in
the worst case, Deflate expands the data by only 5 bytes per 32 Kb block. Finally, free
implementations that avoid patents are available. Notice that the original method, as
designed by Phil Katz, has been patented (United States patent 5,051,745, September
24, 1991) and assigned to PKWARE.

Chapter Summary

The Huffman algorithm is based on the probabilities of the individual data symbols,
which is why it is considered a statistical compression method. Dictionary-based com-
pression methods are different. They do not compute or estimate symbol probabilities
and they do not use a statistical model of the data. They are based on the fact that the
data files that are of interest to us, the files we want to compress and keep for later use,
are not random. A typical data file features redundancies in the form of patterns and
repetitions of data symbols.

A dictionary-based compression method selects strings of symbols from the input
and employs a dictionary to encode each string as a token. The dictionary consists of

120 3. Dictionary Methods

strings of symbols, and it may be static or dynamic (adaptive). The former type is
permanent, sometimes allowing the addition of strings but no deletions, whereas the
latter type holds strings previously found in the input, thereby allowing for additions
and deletions of strings as new input is being read.

If the data features many repetitions, then many input strings will match strings
in the dictionary. A matched string is replaced by a token, and compression is achieved
if the token is shorter than the matched string. If the next input symbols is not found
in the dictionary, then it is output in raw form and is also added to the dictionary.
The following points are especially important: (1) Any dictionary-based method must
write the raw items and tokens on the output such that the decoder will be able to
distinguish them. (2) Also, the capacity of the dictionary is finite and any particular
algorithm must have explicit rules specifying what to do when the (adaptive) dictionary
fills up. Many dictionary-based methods have been developed over the years, and these
two points constitute the main differences between them.

This book describes the following dictionary-based compression methods. The LZ77
algorithm (Section 1.3.1) is simple but not very efficient because its output tokens are
triplets and are therefore large. The LZ78 method (Section 3.1) generates tokens that
are pairs, and the LZW algorithm (Section 3.2) output single-item tokens. The Deflate
algorithm (Section 3.3), which lies at the heart of the various zip implementations, is
more sophisticated. It employs several types of blocks and a hash table, for a very
effective compression.

Self-Assessment Questions

1. Redo Exercise 3.1 for various values of P (the probability of a match).

2. Study the topic of patents in data compression. A good starting point is
[patents 07].

3. Test your knowledge of the LZW algorithm by manually encoding several short
strings, similar to Exercise 3.3.

Words—so innocent and powerless as they are, as standing in a
dictionary, how potent for good and evil they become
in the hands of one who knows how to combine them.

—Nathaniel Hawthorne

G

Part |l:
Advanced Techniques

The second part of this book is concerned with advanced techniques. The original
and unusual technique of arithmetic coding is the topic of Chapter 4. Chapter 5 is
devoted to image compression. It starts with the chief approaches to the compression
of images, explains orthogonal transforms, and discusses the JPEG algorithm, perhaps
the best example of the use of these transforms. The second part of this chapter intro-
duces the wavelet transform. It illustrates this transform and its advantages for image
compression. It explains the differences between orthogonal and subband transforms,
and it presents the WS(Q method for fingerprint compression as an example of the ap-
plication of a wavelet transform. Chapter 6 is devoted to the compression of audio data
and in particular to the technique of linear prediction. Finally, other approaches to
compression—such as the Burrows—Wheeler method, symbol ranking, and SCSU and
BOCU-1—are given their due in Chapter 7.

Great dancers aren’'t great because of their
technique; they are great because of their passion.

—Unknown

4
Arithmetic Coding

= () o Prelude (@)

The Huffman algorithm is simple, efficient, and produces the best codes for the individual
data symbols. The discussion in Chapter 2 however, shows that the only case where
it produces ideal variable-length codes (codes whose average size equals the entropy) is
when the symbols have probabilities of occurrence that are negative powers of 2 (i.e.,
numbers such as 1/2, 1/4, or 1/8). This is because the Huffman method assigns a code
with an integral number of bits to each symbol in the alphabet. Information theory tells
us that a symbol with probability 0.4 should ideally be assigned a 1.32-bit code, because
—log, 0.4 ~ 1.32. The Huffman method, however, normally assigns such a symbol a
code of one or two bits.

Arithmetic coding overcomes the problem of assigning integer codes to the individ-
ual symbols by assigning one (normally long) code to the entire input file. The method
starts with a certain interval, it reads the input file symbol by symbol, and employs
the probability of each symbol to narrow the interval. Specifying a narrower interval
requires more bits, as illustrated in the next paragraph. Thus, the narrow intervals
constructed by the algorithm require longer and longer numbers to specify their bound-
aries. To achieve compression, the algorithm is designed such that a high-probability
symbol narrows the interval less than a low-probability symbol, with the result that
high-probability symbols contribute fewer bits to the output.

An interval can be specified by its lower and upper limits or by one limit and the
width. We use the latter method to illustrate how an interval’s specification becomes
longer as the interval narrows. The interval [0,1] can be specified by the two 1-bit
numbers 0 and 1. The interval [0.1,0.512] can be specified by the longer numbers 0.1
and 0.512. The very narrow interval [0.12575, 0.1257586] is specified by the long numbers
0.12575 and 0.0000086.

124 4. Arithmetic Coding

The output of arithmetic coding is interpreted as a number in the range [0,1). (The
notation [a, b) means the range of real numbers from a to b, including a but not including
b. The range is “closed” at a and “open” at b.) Thus, the code 9746509 is interpreted
as 0.9746509, although the 0. part is not included in the output file.

Before we plunge into the details, here is a bit of history. The principle of arithmetic
coding was first proposed by Peter Elias in the early 1960s. Early practical implemen-
tations of this method were developed by several researchers in the 1970s. Of special
mention are [Moffat et al. 98] and [Witten et al. 87]. They discuss both the principles
and details of practical arithmetic coding and include examples.

4.1 The Basic Idea

The first step is to compute, or at least to estimate, the frequencies of occurrence of
each input symbol. For best results, the precise frequencies are computed by reading the
entire input file in the first pass of a two-pass compression job. However, if the program
can get good estimates of the frequencies from a different source, the first pass may be
omitted.

The first example involves the three symbols a;, as, and as, with probabilities
P, =04, P, =0.5, and P3 = 0.1, respectively. The interval [0, 1) is divided among the
three symbols by assigning each a subinterval proportional in size to its probability. The
order of the subintervals is unimportant. In our example, the three symbols are assigned
the subintervals [0, 0.4), [0.4,0.9), and [0.9, 1.0). To encode the string asasasas, we start
with the interval [0, 1). The first symbol as reduces this interval to the subinterval from
its 40% point to its 90% point. The result is [0.4,0.9). The second as reduces [0.4,0.9) in
the same way (see note below) to [0.6,0.85). The third as reduces this to [0.7,0.825) and
the a3 reduces this to the stretch from the 90% point of [0.7,0.825) to its 100% point,
producing [0.8125,0.8250). The final code our method produces can be any number in
this final range.

Notice that the subinterval [0.6,0.85) is obtained from the interval [0.4,0.9) by
04+ (0.9—-0.4) x 0.4 =0.6 and 0.4+ (0.9 —0.4) x 0.9 = 0.85.

With this example in mind, it should be easy to understand the following rules,
which summarize the main steps of arithmetic coding:

1. Start by defining the current interval as [0, 1).
2. Repeat the following two steps for each symbol s in the input:

2.1. Divide the current interval into subintervals whose sizes are proportional to
the symbols’ probabilities.

2.2. Select the subinterval for s and define it as the new current interval.
3. When the entire input has been processed in this way, the output should be any
number that uniquely identifies the current interval (i.e., any number inside the current
interval).

For each symbol processed, the current interval gets smaller, so it takes more bits to
express it, but the point is that the final output is a single number and does not consist
of codes for the individual symbols. The average code size can be obtained by dividing
the size of the output (in bits) by the size of the input (in symbols). Notice also that

4.1 The Basic ldea 125

the probabilities used in step 2.1 may change all the time, since they may be supplied
by an adaptive probability model (Section 4.5).

A theory has only the alternative of being right or wrong. A model
has a third possibility: it may be right, but irrelevant.

—Eigen Manfred, The Physicist’s Conception of Nature

The next example is a bit more complex. We show the compression steps for the
short string SWISS_ MISS. Table 4.1 shows the information prepared in the first step (the
statistical model of the data). The five symbols appearing in the input may be arranged
in any order. The number of occurrences of each symbol is counted and is divided by the
string size, 10, to determine the symbol’s probability. The range [0, 1) is then divided
among the symbols, in any order, with each symbol receiving a subinterval equal in size
to its probability. Thus, S receives the subinterval [0.5,1.0) (of size 0.5), whereas the
subinterval of I is of size 0.2 [0.2,0.4). The cumulative frequencies column is used by
the decoding algorithm on page 130.

Char Freq Prob. Range CumFreq
Total CumFreq= 10
S 5 5/10=0.5 [0.5, 1.0) 5
W 1 1/10=0.1 [0.4,0.5) 4
1 2 2/10=0.2 [0.2,0.4) 2
M 1 1/10=0.1 [0.1,0.2) 1
U 1 1/10=0.1 [0.0, 0.1) 0

Table 4.1: Frequencies and Probabilities of Five Symbols.

The symbols and frequencies in Table 4.1 are written on the output before any of
the bits of the compressed code. This table will be the first thing input by the decoder.

The encoder starts by allocating two variables, Low and High, and setting them to
0 and 1, respectively. They define an interval [Low, High). As symbols are being input
and processed, the values of Low and High are moved closer together, to narrow the
interval.

After processing the first symbol S, Low and High are updated to 0.5 and 1, re-
spectively. The resulting code for the entire input file will be a number in this range
(0.5 < Code < 1.0). The rest of the input will determine precisely where, in the interval
[0.5,1), the final code will lie. A good way to understand the process is to imagine that
the new interval [0.5,1) is divided among the five symbols of our alphabet using the same
proportions as for the original interval [0, 1). The result is the five subintervals [0.5, 0.55),
[0.55,0.60), [0.60,0.70), [0.70,0.75), and [0.75,1.0). When the next symbol W is input,
the third of those subintervals is selected and is again divided into five subsubintervals.

As more symbols are being input and processed, Low and High are being updated
according to

NewHigh:=01dLow+Range*HighRange (X) ;
NewLow:=01dLow+Range*LowRange (X) ;

126 4. Arithmetic Coding

where Range=01dHigh—01dLow and LowRange (X), HighRange (X) indicate the low and
high limits of the range of symbol X, respectively. In the example above, the second
input symbol is W, so we update Low := 0.5 + (1.0 — 0.5) x 0.4 = 0.70, High := 0.5 +
(1.0 — 0.5) x 0.5 = 0.75. The new interval [0.70,0.75) covers the stretch [40%,50%) of
the subrange of S. Table 4.2 shows all the steps of coding the string SWISS_MISS (the
first three steps are illustrated graphically in Figure 4.3). The final code is the final
value of Low, 0.71753375, of which only the eight digits 71753375 need be written on
the output (but see later for a modification of this statement).

Char. The computation of low and high

S L 0.0+ (1.0-0.0) x 0.5=0.5
H 0.0+ (1.0-0.0) x 1.0=1.0

W L 0.5+ (1.0 —-0.5) x 0.4=0.70
H 0.5+ (1.0—-0.5) x 0.5=0.75

I L 0.7+ (0.75—0.70) x 0.2=0.71
H 0.7+ (0.75 - 0.70) x 0.4=0.72

S L 0.714 (0.72 — 0.71) x 0.5=0.715
H 0.714 (0.72 - 0.71) x 1.0=0.72

S L 0.715+ (0.72 — 0.715) x 0.5=0.7175
H 0.715+ (0.72 — 0.715) x 1.0=0.72

U L 0.7175 4+ (0.72 — 0.7175) x 0.0=0.7175
H 0.7175 + (0.72 — 0.7175) x 0.1 = 0.71775

M L 0.7175 + (0.71775 — 0.7175) x 0.1= 0.717525
H 0.7175 + (0.71775 — 0.7175) x 0.2= 0.717550

I L 0.717525 + (0.71755 — 0.717525) x 0.2=0.717530
H 0.717525 + (0.71755 — 0.717525) x 0.4 = 0.717535

S L 0.717530 + (0.717535 — 0.717530) x 0.5 = 0.7175325
H 0.717530 + (0.717535 — 0.717530) x 1.0=0.717535

S L 0.7175325 + (0.717535 — 0.7175325) x 0.5= 0.71753375
H 0.7175325 + (0.717535 — 0.7175325) x 1.0=0.717535

Table 4.2: The Process of Arithmetic Encoding.

S 1 1075 s
T0.5 +0.75 +0.72 Q.715
10,7 .
T e
0 s o7z Tlom

Figure 4.3: Division of the Probability Interval.

The decoder operates in reverse. It starts by inputting the symbols and their ranges,
and reconstructing Table 4.1. It then inputs the rest of the code. The first digit is 7,

4.1 The Basic ldea 127

so the decoder immediately knows that the entire code is a number of the form 0.7....
This number is inside the subrange [0.5,1) of S, so the first symbol is S. The decoder
then eliminates the effect of symbol S from the code by subtracting the lower limit 0.5
of 8 and dividing by the width of the subrange of S (0.5). The result is 0.4350675, which
tells the decoder that the next symbol is W (since the subrange of W is [0.4,0.5)).

To eliminate the effect of symbol X from the code, the decoder performs the oper-
ation Code:=(Code-LowRange (X)) /Range, where Range is the width of the subrange of
X. Table 4.4 summarizes the steps for decoding our example string (notice that it has
two rows per symbol).

The next example is of three symbols with probabilities listed in Table 4.5a. Notice
that the probabilities are very different. One is large (97.5%) and the others much
smaller. This is an example of skewed probabilities.

Encoding the string asasajasas produces the strange numbers (accurate to 16 dig-
its) in Table 4.6, where the two rows for each symbol correspond to the Low and High
values, respectively. Figure 4.7 lists the Mathematica code that computed the table.

At first glance, it seems that the resulting code is longer than the original string,
but Section 4.4 shows how to figure out the true compression produced by arithmetic
coding.

The steps of decoding this string are listed in Table 4.8 and illustrate a special
problem. After eliminating the effect of a;, on line 3, the result is 0. Earlier, we
implicitly assumed that this means the end of the decoding process, but now we know
that there are two more occurrences of ag that should be decoded. These are shown on
lines 4 and 5 of the table. This problem always occurs when the last symbol in the input
is the one whose subrange starts at zero. In order to distinguish between such a symbol
and the end of the input, we need to define an additional symbol, the end-of-input (or
end-of-file, eof). This symbol should be included in the frequency table (with a very
small probability, see Table 4.5b) and it should be encoded once, at the end of the input.

Tables 4.9 and 4.10 show how the string azazazaseof is encoded into the number
0.0000002878086184764172, and then decoded properly. Without the eof symbol, a
string of all ags would have been encoded into a 0.

Notice how the low value is 0 until the eof is input and processed, and how the high
value quickly approaches 0. Now is the time to mention that the final code does not
have to be the final low value but can be any number between the final low and high
values. In the example of agasazaseof, the final code can be the much shorter number
0.0000002878086 (or 0.0000002878087 or even 0.0000002878088).

Exercise 4.1: Encode the string asasasas and summarize the results in a table similar
to Table 4.9. How do the results differ from those of the string asazasas?

If the size of the input is known, it is possible to do without an eof symbol. The
encoder can start by writing this size (unencoded) on the output. The decoder reads the
size, starts decoding, and stops when the decoded file reaches this size. If the decoder
reads the compressed file byte by byte, the encoder may have to add some zeros at the
end, to make sure the compressed file can be read in groups of eight bits.

128 4. Arithmetic Coding
Char. Code — low Range
S 0.71753375 — 0.5 = 0.21753375/0.5 = 0.4350675
W 0.4350675 — 0.4 = 0.0350675 /0.1 = 0.350675
I 0.350675 — 0.2 = 0.150675 /0.2 = 0.753375
S 0.753375 — 0.5 = 0.253375 /0.5 = 0.50675
S 0.50675 — 0.5 = 0.00675 /0.5 = 0.0135
U 0.0135 -0 =0.0135 /0.1 =0.135
M 0.135-0.1 =0.035 /0.1 =0.35
I 0.35 —-0.2 =0.15 /0.2 =0.75
S 0.75-0.5 =0.25 /0.5 =0.5
S 0.5—0.5 =0 /0.5=10
Table 4.4: The Process of Arithmetic Decoding.
Char Prob. Range Char Prob. Range
ai 0.001838 [0.998162, 1.0) eof 0.000001 [0.999999, 1.0)
as 0.975 [0.023162, 0.998162) ai 0.001837 [0.998162, 0.999999)
as 0.023162 0.0, 0.023162) as 0.975 [0.023162, 0.998162)
as 0.023162 [0.0, 0.023162)
(a) (b)
Table 4.5: (Skewed) Probabilities of Three Symbols.
as 0.0+ (1.0 — 0.0) x 0.023162 = 0.023162
0.0+ (1.0 — 0.0) x 0.998162 = 0.998162
asg 0.023162 + .975 x 0.023162 = 0.04574495
0.023162 + .975 x 0.998162 = 0.99636995
ax 0.04574495 4 0.950625 x 0.998162 = 0.99462270125
0.04574495 + 0.950625 x 1.0 = 0.99636995
as 0.99462270125 + 0.00174724875 x 0.0 = 0.99462270125
0.99462270125 4 0.00174724875 x 0.023162 = 0.994663171025547
as 0.99462270125 + 0.00004046977554749998 x 0.0 = 0.99462270125

0.99462270125 4 0.00004046977554749998 x 0.023162 = 0.994623638610941

Table 4.6: Encoding the String asasaiasas.

4.1 The Basic ldea 129

lowRange={0.998162,0.023162,0.};
highRange={1.,0.998162,0.023162};

low=0.; high=1.;

enc[i_] :=Module[{nlow,nhigh,range},

range=high-low;

nhigh=low+range highRange[[i]];

nlow=low+range lowRangel[[il];

low=nlow; high=nhigh;

Print["r=",N[range,25]," 1=",N[low,17]," h=",N[high,17]1]]

enc[2]
enc[2]
enc[1]
enc[3]
enc[3]
Figure 4.7: Mathematica Code for Table 4.6.
Char. Code — low Range
as 0.99462270125 — 0.023162 = 0.97146170125/0.975 = 0.99636995
as 0.99636995 — 0.023162 =0.97320795 /0.975 = 0.998162
a1 0.998162 — 0.998162 =0.0 /0.00138 = 0.0
as 0.0 - 0.0 =0.0 /0.023162 = 0.0
as 0.0 —-0.0 =0.0 /0.023162= 0.0
Table 4.8: Decoding the String acasaiasas.
as 0.0+ (1.0 —0.0) x 0.0= 0.0
0.0 + (1.0 — 0.0) x 0.023162 = 0.023162
as 0.0 + 0.023162 x 0.0= 0.0
0.0+ 0.023162 x 0.023162 = 0.000536478244
as 0.0 + 0.000536478244 x 0.0= 0.0
0.0 + 0.000536478244 x 0.023162 = 0.000012425909087528
as 0.0 4+ 0.000012425909087528 x 0.0= 0.0

0.0 4- 0.000012425909087528 x 0.023162 = 0.0000002878089062853235
eof 0.0 4 0.0000002878089062853235 x 0.999999 = 0.0000002878086184764172
0.0 4 0.0000002878089062853235 x 1.0 = 0.0000002878089062853235

Table 4.9: Encoding the String azasasaseof.

Char. Code—low Range
a3 0.0000002878086184764172-0 =0.0000002878086184764172 /0.023162=0.00001242589666161891247
a3 0.00001242589666161891247-0=0.00001242589666161891247/0.023162=0.000536477707521756

a3 0.000536477707521756-0 =0.000536477707521756 /0.023162=0.023161976838
a3z 0.023161976838-0.0 =0.023161976838 /0.023162=0.999999
eof 0.999999-0.999999 =0.0 /0.000001=0.0

Table 4.10: Decoding the String azasasaseof.

130 4. Arithmetic Coding
4.2 Implementation Details

The encoding process described earlier is not practical, because it requires that num-
bers of unlimited precision be stored in Low and High. The decoding process de-
scribed on page 127 (“The decoder then eliminates the effect of the S from the code
by subtracting...and dividing ...”) is simple in principle but also impractical. The
code, which is a single number, is normally long and may also be very long. A 1 Mbyte
file may be encoded into, say, a 500 Kbyte file that consists of a single number. Dividing
a 500 Kbyte number is complex and slow.

Any practical implementation of arithmetic coding should be based on integers, not
reals (because floating-point arithmetic is slow and precision is lost), and they should
not be very long (preferably just single precision). We describe such an implementation
here, using two integer variables Low and High. In our example they are four decimal
digits long, but in practice they might be 16 or 32 bits long. These variables hold the
low and high limits of the current subinterval, but we don’t let them grow too much. A
glance at Table 4.2 shows that once the leftmost digits of Low and High become identical,
they never change. We therefore shift such digits out of the two variables and write one
digit on the output. This way, the two variables don’t have to hold the entire code, just
the most-recent part of it. As digits are shifted out of the two variables, a zero is shifted
into the right end of Low and a 9 into the right end of High. A good way to understand
this is to think of each of the two variables as the left ends of two infinitely-long numbers.
Low contains zxx200.. ., and High= yyyy99... .

One problem is that High should be initialized to 1, but the contents of Low and
High should be interpreted as fractions less than 1. The solution is to initialize High to
9999. .., to represent the infinite fraction 0.999..., because this fraction equals 1.

(This is easy to prove. If 0.999. .. is less than 1, then the average a = (1+0.999...)/2
would be a number between 0.999... and 1, but there is no way to write a. It is
impossible to give it more digits than to 0.999..., because the latter already has an
infinite number of digits. It is impossible to make the digits any bigger, since they are
already 9’s. This is why the infinite fraction 0.999... must equal 1.)

Exercise 4.2: Write the number 0.5 in binary.

Table 4.11 describes the encoding process of the string SWISS MISS. Column 1 lists
the next input symbol. Column 2 shows the new values of Low and High. Column 3
shows these values as scaled integers, after High has been decremented by 1. Column
4 shows the next digit sent to the output. Column 5 shows the new values of Low and
High after being shifted to the left. Notice how the last step sends the four digits 3750
to the output. The final output is 717533750.

Decoding is the opposite of encoding. We start with Low=0000, High=9999, and
Code=7175 (the first four digits of the compressed file). These are updated at each step
of the decoding loop. Low and High approach each other (and both approach Code)
until their most significant digits are the same. They are then shifted to the left, which
separates them again, and Code is also shifted at that time. An index is calculated at
each step and is used to search the cumulative frequencies column of Table 4.1 to figure
out the current symbol.

Each iteration of the loop consists of the following steps:

4.2 Implementation Details 131

1 2 3 4 5
S L= 0+1 — 0)x05=05 5000 5000
H= 0+(1 — 0)x1.0=1.0 9999 9999
W L = 05+(1 — 5)x04=07 7000 7 0000
H= 0. 5+(1 — 5)x05=0.75 7499 7 4999
I L= 0+05 — 0)x02=0.1 1000 1 0000
H= 0+(05 — 0)x04=02 1999 1 9999
S L= 0+1 — 0)x05=05 5000 5000
H= 0+(1 — 0)x1.0=1.0 9999 9999
S L 05+(1 — 0.5)x0.5=0.75 7500 7500
= 05+(1 — 05)x1.0=1.0 9999 9999
L L =0.75+(1 — 0.75)x0.0=0.75 7500 7 5000
H=0.75+(1 — 0.75)x0.1=0.775 7749 7 7499
M L = 0.5+(0.75 — 0.5) x 0.1=0.525 5250 5 2500
H= 05+(0.75—0.5)x02=055 5499 5 4999
I L =025+(0.5—-025)x02=03 3000 3 0000
H =0.25+(0.5—0.25)x04=035 3499 3 4999
S L= 0+05 — 0)x05=.25 2500 2500
H= 0405 — 0)x1.0=05 4999 4999

S L =0.25+(0.5—0.25) x 0.5=0.375 3750 3750
H 0.25+(0.5— 0.25) x 1.0=0.5 4999 4999

Table 4.11: Encoding SWISS MISS by Shifting.

1. Compute index:=((Code-Low+1)x10-1)/(High-Low+1) and truncate it to the near-
est integer. (The number 10 is the total cumulative frequency in our example.)

2. Use index to find the next symbol by comparing it to the cumulative frequencies
column in Table 4.1. In the example below, the first value of index is 7.1759, truncated
to 7. Seven is between the 5 and the 10 in the table, so it selects the S.

3. Update Low and High according to

Low:=Low+(High-Low+1)LowCumFreq[X]/10;
High:=Low+(High-Low+1)HighCumFreq[X]/10-1;

where LowCumFreq[X] and HighCumFreq[X] are the cumulative frequencies of symbol X
and of the symbol above it in Table 4.1.
4. If the leftmost digits of Low and High are identical, shift Low, High, and Code one
position to the left. Low gets a 0 entered on the right, High gets a 9, and Code gets the
next input digit from the compressed file.

Here are all the decoding steps for our example:

0. Initialize Low=0000, High=9999, and Code=7175.

1. index=[(7T175— 0+ 1) x 10 — 1]/(9999 — 0+ 1) = 7.1759 — 7. Symbol S is selected.
Low = 0+ (9999 — 0+ 1) x 5/10 = 5000. High = 0+ (9999 — 0+ 1) x 10/10 — 1 = 9999.

132 4. Arithmetic Coding

2. index= [(7175 — 5000 + 1) x 10 — 1]/(9999 — 5000 + 1) = 4.3518 — 4. Symbol W is
selected.

Low = 50004(9999—5000+1) x4/10 = 7000. High = 5000+ (9999—5000+1)x5/10—1 =
7499.

After the 7 is shifted out, we have Low=0000, High=4999, and Code=1753.

3. index= [(1763 — 0+ 1) x 10 — 1]/(4999 — 0 + 1) = 3.5078 — 3. Symbol I is selected.
Low =0+ (4999 — 0+ 1) x 2/10 = 1000. High =0+ (4999 — 0+ 1) x 4/10 — 1 = 1999.
After the 1 is shifted out, we have Low=0000, High=9999, and Code=7533.

4. index= [(7533 —0+1) x 10 — 1] /(9999 — 0+ 1) = 7.5339 — 7. Symbol S is selected.
Low =0+ (9999 — 0+ 1) x 5/10 = 5000. High =04 (9999 — 0+ 1) x 10/10 — 1 = 9999.
5. index= [(7533 — 5000 + 1) x 10 — 1]/(9999 — 5000 + 1) = 5.0678 — 5. Symbol S is
selected.

Low = 5000-+(9999—5000+1)x5/10 = 7500. High = 5000+ (9999—5000+1)x10/10—1 =
9999.

6. index= [(7533 — 7500 + 1) x 10 — 1]/(9999 — 7500 + 1) = 0.1356 — 0. Symbol |, is
selected.

Low = 75004 (9999—7500+1) x0/10 = 7500. High = 7500+ (9999—7500+1)x1/10—1 =
7749.

After the 7 is shifted out, we have Low=5000, High=7499, and Code=5337.

7. index= [(5337 — 5000 + 1) x 10 — 1]/(7499 — 5000 4+ 1) = 1.3516 — 1. Symbol M is
selected.

Low = 50004 (7499—5000+1) x1/10 = 5250. High = 5000+ (7499—5000+1)x2/10—1 =
5499.

After the 5 is shifted out we have Low=2500, High=4999, and Code=3375.

8. index= [(3375 — 2500 4+ 1) x 10 — 1]/(4999 — 2500 + 1) = 3.5036 — 3. Symbol I is
selected.

Low = 25004 (4999—250041)x2/10 = 3000. High = 2500+ (4999—2500+1)x4/10—1 =
3499.

After the 3 is shifted out we have Low=0000, High=4999, and Code=3750.

9. index=[(3750 — 0+ 1) x 10 — 1]/(4999 — 0 + 1) = 7.5018 — 7. Symbol S is selected.
Low =0+ (4999 — 0+ 1) x 5/10 = 2500. High = 0+ (4999 — 0+ 1) x 10/10 — 1 = 4999.
10. index= [(3750 — 2500 + 1) x 10 — 1]/(4999 — 2500 + 1) = 5.0036 — 5. Symbol S is
selected.

Low = 2500+(4999—2500+1) ><5/10 = 3750. High = 2500+(4999—2500+1)x 10/10—1 =
4999.

Exercise 4.3: How does the decoder know to stop the loop at this point?

John’s sister (we won’t mention her name) wears socks of two different colors, white
and gray. She keeps them in the same drawer, completely mixed up. In the drawer she
has 20 white socks and 20 gray socks. Assuming that it is dark and she has to find two
matching socks. How many socks does she have to take out of the drawer to guarantee
that she has a matching pair?

4.3 Underflow 133

1 2 3 4 5

1 L=0+(1 - 0)x0.0 =0.0 000000 0 000000
H=0+(1 — 0)x0.023162= 0.023162 023162 0 231629

2 L=0+(0.231629 — 0)x0.0 =0.0 000000 0 000000
H=0+(0.231629 — 0)x0.023162= 0.00536478244 005364 0 053649

3 L=0+(0.053649 — 0)x0.0 =0.0 000000 0 000000
H=0+(0.053649 — 0)x0.023162= 0.00124261813 001242 0 012429

4 L=0+(0.012429 — 0)x0.0 =0.0 000000 0 000000
H=0+(0.012429 — 0)x0.023162= 0.00028788049 000287 0 002879

5 L=0+(0.002879 — 0)x0.0 =0.0 000000 0 000000
H=0+(0.002879 — 0)x0.023162= 0.00006668339 000066 0 000669

Table 4.12: Encoding azasasasas by Shifting.

4.3 Underflow

Table 4.12 shows the steps in encoding the string asasasasas by shifting. This table is
similar to Table 4.11, and it illustrates the problem of underflow. Low and High approach
each other, and since Low is always 0 in this example, High loses its significant digits as
it approaches Low.

Underflow may happen not just in this case but in any case where Low and High
need to converge very closely. Because of the finite size of the Low and High variables,
they may reach values of, say, 499996 and 500003, and from there, instead of reaching
values where their most significant digits are identical, they reach the values 499999 and
500000. Since the most significant digits are different, the algorithm will not output
anything, there will not be any shifts, and the next iteration will only add digits beyond
the first six ones. Those digits will be lost, and the first six digits will not change. The
algorithm will iterate without generating any output until it reaches the eof.

The solution to this problem is to detect such a case early and rescale both variables.
In the example above, rescaling should be done when the two variables reach values of
49xxxx and 50yyyy. Rescaling should squeeze out the second most-significant digits,
end up with 4xxxx0 and 5yyyy9, and increment a counter cntr. The algorithm may
have to rescale several times before the most-significant digits become equal. At that
point, the most-significant digit (which can be either 4 or 5) should be output, followed
by cntr zeros (if the two variables converged to 4) or nines (if they converged to 5).

134 4. Arithmetic Coding

4.4 Final Remarks

All the examples so far have been in decimal, because the required computations are
easier to understand in this number base. It turns out that all the algorithms and rules
described above apply to the binary case as well and can be used with only one change:
every occurrence of 9 (the largest decimal digit) should be replaced with 1 (the largest
binary digit).

The examples above don’t seem to show any compression at all. It seems that
the three example strings SWISS MISS, asasajazas, and asasasaseof are encoded into
very long numbers. In fact, it seems that the length of the final code depends on the
probabilities involved. The long probabilities of Table 4.5a generate long numbers in
the encoding process, whereas the shorter probabilities of Table 4.1 result in the more
reasonable Low and High values of Table 4.2. This behavior demands an explanation.

I am ashamed to tell you to how many figures I carried these computations, having
no other business at that time.

—Isaac Newton

To figure out the kind of compression achieved by arithmetic coding, we have to
consider two facts: (1) In practice, all the operations are performed on binary numbers,
so we have to translate the final results to binary before we can estimate the efficiency
of the compression; (2) since the last symbol encoded is the eof, the final code does not
have to be the final value of Low; it can be any value between Low and High. This makes
it possible to select a shorter number as the final code that’s being output.

Table 4.2 encodes string SWISS MISS into the final low and high values 0.71753375
and 0.717535. The approximate binary values of these numbers are
0.10110111101100000100101010111 and 0.1011011110110000010111111011, so we can se-
lect the number 10110111101100000100 as our final, compressed output. The ten-symbol
string has been encoded into a 20-bit number. Does this represent good compression?

The answer is yes. Using the probabilities of Table 4.1, it is easy to calculate the
probability of the string SWISS_MISS. It is P = 0.5° x 0.1 x0.22 x 0.1 x 0.1 = 1.25 x 1075,
The entropy of this string is therefore —log, P = 19.6096. Twenty bits are therefore the
minimum needed in practice to encode the string.

The symbols in Table 4.5a have probabilities 0.975, 0.001838, and 0.023162. These
numbers require quite a few decimal digits, and as a result, the final low and high values
in Table 4.6 are the numbers 0.99462270125 and 0.994623638610941. Again it seems
that there is no compression, but an analysis similar to the above shows compression
that’s very close to the entropy.

The probability of the string asasaiasas is 0.975% x0.001838x0.0231622 ~ 9.37361 x
1077, and —log, 9.37361 x 107 ~ 20.0249.

The binary representations of the final values of low and high in Table 4.6 are
0.111111101001111110010111111001 and 0.111111101001111110100111101. We can se-
lect any number between these two, so we select 1111111010011111100, a 19-bit number.
(This should have been a 21-bit number, but the numbers in Table 4.6 have limited pre-
cision and are not exact.)

4.4 Final Remarks 135

o Exercise 4.4: Given the three symbols a1, as, and eof, with probabilities P; = 0.4,
P, = 0.5, and Peof = 0.1, encode the string asasaseof and show that the size of the
final code equals the (practical) minimum.

The following argument shows why arithmetic coding can, in principle, be a very
efficient compression method. We denote by s a sequence of symbols to be encoded, and
by b the number of bits required to encode it. As s gets longer, its probability P(s) gets
smaller and b becomes larger. Since the logarithm is the information function, it is easy
to see that b should grow at the same rate that log, P(s) shrinks. Their product should
therefore be constant, or close to a constant. Information theory shows that b and P(s)
satisfy the double inequality

2 < 2P(s) < 4,

which implies
1 —1log, P(s) < b < 2—1logy P(s). (4.1)

As s gets longer, its probability P(s) shrinks, the quantity —log, P(s) becomes a large
positive number, and the double inequality of Equation (4.1) shows that in the limit,
b approaches —log, P(s). This is why arithmetic coding can, in principle, compress a
string of symbols to its theoretical limit.

For more information on this topic, see [Moffat et al. 98] and [Witten et al. 87].

“«@r Intermezzo AW

The Real Numbers. We can think of arithmetic coding as a method that compresses
a given file by assigning it a real number in the interval [0, 1). Practical implementations
of arithmetic coding are based on integers, but in principle we can consider this method
as a mapping from the integers (because a data file can be considered a long integer) to
the reals. We feel that we understand integers intuitively (because we can count one cow,
two cows, etc.), but real numbers have unexpected properties and exhibit unintuitive
behavior, a glimpse of which is revealed in this short intermezzo.

The real numbers can be divided into the sets of rational and irrational. A rational
number can be represented as the ratio of two integers, whereas an irrational number
cannot be represented in this way. The ancient Greeks already knew that /2 is irrational.
The real numbers can also be divided into algebraic and transcendental numbers. The
former is the set of all the reals that are solutions of algebraic equations.

We know many integers (0, 1, 7, 10, and 10'%° immediately come to mind). We are
also familiar with a few irrational numbers (v/2, e, and 7 are common examples), so we
intuitively feel that most real numbers must be rational and the irrationals are a small
minority. Similarly, it is easy to believe that most reals are algebraic and transcendental
numbers are rare. However, set theory, the creation, in the 1870s, of Georg Cantor,
suggests that there are different kinds of infinities, that the reals constitute a greater
infinity than the integers (the integers are said to be countable, while the reals are
not), that the rational numbers are countable, while the irrationals are uncountable,
and similarly, that the algebraic numbers are countable, while the transcendentals are
uncountable; completely counterintuitive notions.

136 4. Arithmetic Coding

Today, we believe in the existence of atoms. If we start with a chunk of matter, cut it
into pieces, cut each piece into smaller pieces, and continue in this way, we will eventually
arrive at individual atoms or even their constituents. The real numbers, however, are
very different. They can be represented as points along an infinitely long number line,
but they are everywhere dense on this line. Thus, any segment on the number line, as
short as we can imagine, contains an (uncountable) infinity of real numbers. We cannot
arrive at a segment containing just one number by repeatedly segmenting and producing
shorter and shorter segments.

We are also familiar with the concepts of successor and predecessor. An integer N
has both a successor N + 1 and a predecessor N — 1. Cantor has shown that the rational
numbers are countable; each can be associated with an integer. Thus, each rational
number can be said to have a successor and a predecessor. The real numbers, again, are
different. Given a real number a, we cannot point to its successor. If we find another real
number b that may be the successor of a, then there is always another number, namely
(a+b)/2, that is located between a and b and is thus closer to a than b is. We therefore
say that a real number does not have a successor or a predecessor; it does not have
any immediate neighbors. Yet the real numbers form a continuum, because every point
on the number line has a real number that corresponds to it. We cannot imagine any
collection of points, numbers, or any other objects that are everywhere (extremely) dense
but do not feature a predecessor/successor relation. The real numbers are therefore very
counterintuitive.

Pick up two real numbers z and y at random (but with a uniform distribution)
in the interval (0,1), divide them to obtain the real number R = z/y, and examine
the integer I nearest R. We intuitively feel that I can be even or odd with the same
probability, but careful calculations [Weisstein-picking 07] show that the probability of
I being even is 0.46460. .. instead of the expected 0.5.

This book contains text, tables, mathematical expressions, and figures, and it can
be stored in the computer as a PDF file. Such a file, like any data file, can be considered
an integer or a long string B of digits (decimal, binary, or to any other base). A real
number is also a (finite or infinite) string of digits. Thus, it is natural to ask, is there
a real number that includes B in its string of digits? The answer is yes. Even more,
there is a real number that includes in its infinite expansion all the books ever written
and all those that will be written. Simply generate all the integers (we will use binary
notation) 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001,...and
concatenate them to construct a real number R. From its construction, R includes every
possible bitstring and thus every past and future book. (Students pay attention. Both
the questions and answers of your next examination are also included in this number.
It’s just a question of finding this important part of R.)

A Lexicon is a real number that contains in its expansion infinitely many times
anything imaginable and unimaginable, everything ever written, or that will ever be
written, and any descriptions of every object, process, and phenomenon, real or imagi-
nary. Contrary to any intuitive feelings that we may have, such monsters are not rare.
The surprising result, due to [Calude and Zamfirescu 98], is that almost every real num-
ber is a Lexicon! This may be easier to comprehend by means of a thought experiment.
If we put all the reals in a bag, and pick out one at random, it will almost certainly be
a Lexicon.

4.5 Adaptive Arithmetic Coding 137

Gregory Chaitin, the originator of algorithmic information theory, describes in The
Limits of Reason [Chaitin 07], a real number, denoted by Q, that is well defined and is
a specific number, but is impossible to compute in its entirety.

Unusual, unexpected, counterintuitive, weird!

4.5 Adaptive Arithmetic Coding

The method of arithmetic coding has two features that make it easy to extend:

1. One of the main encoding steps (page 125) updates NewLow and NewHigh. Similarly,
one of the main decoding steps (step 3 on page 131) updates Low and High according to

Low:=Low+(High-Low+1)LowCumFreq[X]/10;
High:=Low+(High-Low+1)HighCumFreq[X]/10-1;

This means that in order to encode symbol X, the encoder should be given the cumulative
frequencies of X and of the symbol immediately above it (see Table 4.1 for an example of
cumulative frequencies). This also implies that the frequency of X (or, equivalently, its
probability) could be modified each time it is encoded, provided that the encoder and
the decoder do this in the same way.

2. The order of the symbols in Table 4.1 is unimportant. They can even be swapped in
the table during the encoding process as long as the encoder and decoder do it in the
same way.

With this in mind, it is easy to understand how adaptive arithmetic coding works.
The encoding algorithm has two parts: the probability model and the arithmetic encoder.
The model reads the next symbol from the input and invokes the encoder, sending it
the symbol and the two required cumulative frequencies. The model then increments
the count of the symbol and updates the cumulative frequencies. The point is that the
symbol’s probability is determined by the model from its old count, and the count is
incremented only after the symbol has been encoded. This makes it possible for the
decoder to mirror the encoder’s operations. The encoder knows what the symbol is even
before it is encoded, but the decoder has to decode the symbol in order to find out
what it is. The decoder can therefore use only the old counts when decoding a symbol.
Once the symbol has been decoded, the decoder increments its count and updates the
cumulative frequencies in exactly the same way as the encoder.

The model should keep the symbols, their counts (frequencies of occurrence), and
their cumulative frequencies in an array. This array should be maintained in sorted
order of the counts. Each time a symbol is read and its count is incremented, the model
updates the cumulative frequencies, then checks to see whether it is necessary to swap
the symbol with another one, to keep the counts in sorted order.

It turns out that there is a simple data structure that allows for both easy search
and update. This structure is a balanced binary tree housed in an array. (A balanced
binary tree is a complete binary tree where some of the bottom-right nodes may be
missing.) The tree should have a node for every symbol in the alphabet, and since it is
balanced, its height is [log, n], where n is the size of the alphabet. For n = 256, the
height of the balanced binary tree is 8, so starting at the root and searching for a node

138 4. Arithmetic Coding

takes at most eight steps. The tree is arranged such that the most probable symbols (the
ones with high counts) are located near the root, which speeds up searches. Table 4.13a

shows an example of a ten-symbol alphabet with counts. Table 4.13b shows the same
symbols sorted by count.

ay az as ay as ag ar as ag aio

@ 11 12 12 2 5 1 2 19 12 8
b as a as ag aq aio as aq ar ag
®) 19 12 12 12 1 8 5 2 2 1

Table 4.13: A Ten-Symbol Alphabet With Counts.

The sorted array “houses” the balanced binary tree of Figure 4.15a. This is a
simple, elegant way to construct a tree. A balanced binary tree can be housed in an
array without the use of any pointers. The rules are (1) the first array location (with
index 1) houses the root, (2) the two children of the node at array location 4 are housed
at locations 2i and 2i + 1, and (3) the parent of the node at array location j is housed
at location [j/2]. It is easy to see how sorting the array has placed the symbols with
largest counts at and near the root.

In addition to a symbol and its count, another value is now added to each tree node,
the total counts of its left subtree. This will be used to compute cumulative frequencies.
The corresponding array is shown in Table 4.14a.

Assume that the next symbol read from the input is ag. Its count is incremented
from 12 to 13. The model keeps the array in sorted order by searching for the farthest
array element to the left of ag that has a count smaller than that of ag. This search can
be a straight linear search if the array is short enough, or a binary search if the array
is long. In our case, symbols ag and ay should be swapped (Table 4.14b). Figure 4.15b
shows the tree after the swap. Notice how the left-subtree counts have been updated.

ag az az ag ayp aipp a5 a4 Qa7 Qg
(a) 19 12 12 12 11 8) 2 2 1

40 16 8 2 1 0 0 0 0

ag ag ag az a1 G G5 G4 Q7 Qg
(by 19 13 12 12 11 8 5 2 2

41 16 8 2 1 0 0 0 0 0

—_

Table 4.14: A Ten-Symbol Alphabet With Counts.

Finally, here is how the cumulative frequencies are computed from this tree. When
the cumulative frequency for a symbol X is needed, the model follows the tree branches
from the root to the node containing X while adding numbers into an integer af. Each
time a right branch is taken from an interior node N, af is incremented by the two
numbers (the count and the left-subtree count) found in that node. When a left branch
is taken, af is not modified. When the node containing X is reached, the left-subtree
count of X is added to af, and af then contains the quantity LowCumFreq[X].

4.5 Adaptive Arithmetic Coding

as,19,40
/ \
a,12,16 as, 12,8
//////\\\\\\\\ //////\\\\\\\\
a9,12,2 a1, @080 a5,5,0
A e
a4,2,0 a7,2,0 ae,1,0
(a)
as,19,41
/\
ao,13,16 as,12,8
7 \
a,12,2 a,11,1 @108,0 a5,5,0
/
a4,2,0 a7,2,0 ae6,1,0
(b)

Q4 2 0—1

ag 12 213
a2 1415
as 12 16—27
ag 1 2828
a1 11 29—39
ag 19 4058
aio 8 59—66
as 12 6778
as 5 T79—83

Figure 4.15: Adaptive Arithmetic Coding.

139

140 4. Arithmetic Coding

As an example, we trace the tree of Figure 4.15a from the root to symbol ag, whose
cumulative frequency is 28. A right branch is taken at node as, adding 12 and 16 to
af. A left branch is taken at node a;, adding nothing to af. When reaching ag, its
left-subtree count, 0, is added to af. The result in af is 12 + 16 = 28, as can be verified
from Figure 4.15c. The quantity HighCumFreq[X] is obtained by adding the count of ag
(which is 1) to LowCumFreq[X].

To trace the tree and find the path from the root to ag, the algorithm performs the
following steps:

1. Find ag in the array housing the tree by means of a binary search. In our example
the node with ag is found at array location 10.

2. Integer-divide 10 by 2. The remainder is 0, which means that ag is the left child of
its parent. The quotient is 5, which is the array location of the parent.

3. Location 5 of the array contains a;. Integer-divide 5 by 2. The remainder is 1, which
means that a; is the right child of its parent. The quotient is 2, which is the array
location of a;’s parent.

4. Location 2 of the array contains as. Integer-divide 2 by 2. The remainder is 0, which
means that as is the left child of its parent. The quotient is 1, the array location of the
root, so the process stops.

The PPM compression method, [Salomon 07], is a good example of a statistical
model that invokes an arithmetic encoder in the way described here.

The driver held out a letter. Boldwood seized it and opened it, expecting another
anonymous one—so greatly are people’s ideas of probability a mere sense that prece-
dent will repeat itself. “I don’t think it is for you, sir,” said the man, when he saw
Boldwood’s action. “Though there is no name I think it is for your shepherd.”

—Thomas Hardy, Far From The Madding Crowd

4.6 Range Encoding

The use of integers in arithmetic coding is a must in any practical implementation, but
it results in slow encoding because of the need for frequent renormalizations. The main
steps in any integer-based arithmetic coding implementation are (1) proportional range
reduction and (2) range expansion (renormalization).

Range encoding (or range coding) is an improvement of arithmetic coding that
reduces the number of renormalizations and thereby speeds up integer-based arithmetic
coding by factors of up to 2. The main references are [Schindler 98] and [Campos 06],
and the description here is based on the former.

The main idea is to treat the output not as a binary number, but as a number to
another base (256 is commonly used as a base, implying that each digit is a byte). This
requires fewer renormalizations and no bitwise operations. The following analysis may
shed light on this method.

At any point during arithmetic coding, the output consists of four parts as follows:

1. The part already written on the output. This part will not change.

Chapter Summary 141

2. One digit (bit, byte, or a digit to another base) that may be modified by at most
one carry when adding to the lower end of the interval. (There cannot be two carries
because when this digit was originally determined, the range was less than or equal to
one unit. Two carries require a range greater than one unit.)

3. A (possibly empty) block of digits that passes on a carry (1 in binary, 9 in decimal,
255 for base-256, etc.) and are represented by a counter counting their number.

4. The low variable of the encoder.

The following states can occur while data is encoded:

m No renormalization is needed because the range is in the desired interval.

s The low end plus the range (this is the upper end of the interval) will not produce
any carry. In this case the second and third parts can be output because they will never
change.

» The digit produced will become part two, and part three will be empty. The low
end has already produced a carry. In this case, the (modified) second and third parts
can be output; there will not be another carry. Set the second and third part as before.

» The digit produced will pass on a possible future carry, so it is added to the block
of digits of part three.

The difference between conventional integer-based arithmetic coding and range cod-
ing is that in the latter, part two, which may be modified by a carry, has to be stored
explicitly. With binary output this part is always 0 since the 1’s are always added to
the carry-passing-block. Implementing that is straightforward.

More information and code can be found in [Campos 06]. Range coding is used in
the LZMA dictionary-based method [Salomon 07].

Chapter Summary

An algorithm such as Huffman coding is simple, basic, and has many applications in data
compression. However, once we learn it, it does not surprise us. Students exposed to
this method tend to say “I could also come up with this algorithm if only I were 10 times
more intelligent.” Arithmetic coding, however, is different. It is one of those ideas that
takes its student by surprise. We tend to say “I would never have thought of that.” The
main idea is to replace an entire file with a single, short number that can be considered
a real number in the interval [0,1). The number is short because each data symbol input
from the file increases the length of the number by an amount inversely proportional to
the symbol’s probability (whereas in the original file, each symbol increases the length
of the file by the same amount).

Given a file with data symbols from an N-symbol alphabet, the principle of arith-
metic coding is to divide the interval [0,1) into N segments, such that the width of the
segment for symbol S is proportional to the probability of S. If the first symbol input
from the data file is, say, the letter P, then the segment for P is selected and is divided
into NV segments of the same relative widths.

142 4. Arithmetic Coding

It is easy to examine two extreme cases of this process. In the first such case, we
assume that the input file consists of n copies of the most-common symbol of the alphabet
(such as the file EEE. . .E). The algorithm repeatedly selects the widest segment, divides
it into IV segments, and again selects the widest of those. The final result, after reading
n symbols, is a narrow segment W, but it is the widest possible segment obtainable
after n divisions. In the other extreme case, we imagine a file that consists of n copies
of the least-common symbol (such as the file QQQ...Q). After reading n such symbols,
always selecting the narrowest of N segments, and dividing again, we end up with the
narrowest segment R that is possible after n divisions.

Clearly, W is wider than R (although in certain rare cases they may have the same
width), and the point is that a narrow segment takes more digits to specify than a wide
segment. A segment [a,b) can be fully specified by its left boundary a and its width
b — a, or by its two boundaries ¢ and b. In either case, the specifications require more
digits for a narrow segment. For example, the narrow segment (0.1234567,0.1234568)
can be specified by the two long numbers 0.1234567 and 0.0000001, whereas the wider
segment [0.1,0.2) can be specified by a = 0.1 and b — a = 0.1.

The Huffman method (Chapter 2) is simple, fast, and produces excellent results,
but is not as effective as arithmetic coding. The conscientious reader may benefit from
the discussion in [Bookstein and Klein 93], where the authors argue in favor of Huffman
coding.

Self-Assessment Questions

1. Arithmetic coding replaces a data file with a real number in the interval [0,1).
The number of possible data files is, of course, infinite, and so is the number of reals
in any interval. Discuss these infinities and show that for any data file there is a real
number in the interval [0, 1).

2. In a computer, real numbers are represented as floating-point numbers. The
chapter mentions that floating-point arithmetic is slow and has limited precision. Search
the current literature to find the precision of floating-point numbers on various comput-
ing platforms, especially supercomputers, which are designed for fast, high-precision
scientific computations.

3. Come up with an argument that shows why arithmetic coding can, in principle,
be a very efficient compression method. This argument can be found somewhere in this
chapter.

That arithmetic is the basest of all mental activities is proved by the
fact that it is the only one that can be accomplished by a machine.

—Arthur Schopenhauer

(e

5
Image Compression

Y 33 Prelude A

A digital image is a rectangular array of dots, or picture elements, arranged in m rows
and n columns. The expression m x n is called the resolution of the image, and the dots
are called pizels (except in the cases of fax images and video compression, where they are
referred to as pels). The term “resolution” is often also used to indicate the number of
pixels per unit length of the image. Thus, dpi stands for dots per inch. For the purpose
of image compression it is useful to distinguish the following types of images:

1. A bi-level (or monochromatic) image. This is an image where the pixels can have one
of two values, normally referred to as black and white. Each pixel in such an image is
represented by one bit, making this the simplest type of image.

2. A grayscale image. A pixel in such an image consists of g bits, where ¢ is normally
compatible with a byte size; i.e., it is 4, 8, 12, 16, 24, or some other convenient multiple
of 4 or of 8. The pixel’s value indicates one of 29 shades of gray (or shades of some
other color). The set of the most-significant bits of all the pixels is the most-significant
bitplane. Thus, a grayscale image has g bitplanes.

3. A continuous-tone image. This type of image can have many similar colors (or
grayscales). When adjacent pixels differ by just one unit, it is hard or even impossible
for the eye to distinguish their colors. As a result, such an image may contain areas
with colors that seem to vary continuously as the eye moves along the area. A pixel
in such an image is represented by either a single large number (in the case of many
grayscales) or three components (in the case of a color image). A continuous-tone image
is normally a natural image (natural as opposed to artificial) and is obtained by taking a
photograph with a digital camera, or by scanning a photograph or a painting. Reference
[Carpentieri et al. 00] is a general survey of lossless compression of this type of image.
4. A discrete-tone image (also called a graphical image or a synthetic image). This is

144 5. Image Compression

normally an artificial image. It may have a few colors or many colors, but it does not
have the noise and blurring of a natural image. Examples are an artificial object or
machine, a page of text, a chart, a cartoon, or the contents of a computer screen. (Not
every artificial image is discrete-tone. A computer-generated image that’s meant to look
natural is a continuous-tone image in spite of its being artificially generated.) Artificial
objects, text, and line drawings have sharp, well-defined edges, and are therefore highly
contrasted from the rest of the image (the background). Adjacent pixels in a discrete-
tone image often are either identical or vary significantly in value. Such an image does
not compress well with lossy methods, because the loss of just a few pixels may render
a letter illegible, or change a familiar pattern to an unrecognizable one. Compression
methods for continuous-tone images often do not handle sharp edges very well, so special
methods are needed for efficient compression of these images. Notice that a discrete-tone
image may be highly redundant, since the same character or pattern may appear many
times in the image.

5. A cartoon-like image. This is a color image that consists of uniform areas. Each area
has a uniform color but adjacent areas may have very different colors. This feature may
be exploited to obtain excellent compression.

Whether an image is treated as discrete or continuous is usually dictated by the depth
of the data. However, it is possible to force an image to be continuous even if it would
fit in the discrete category. (From www.genaware.com)

It is intuitively clear that each type of image may feature redundancy, but they are
redundant in different ways. This is why any given compression method may not perform
well for all images, and why different methods are needed to compress the different image
types. There are compression methods for bi-level images, for continuous-tone images,
and for discrete-tone images. There are also methods that try to break an image up into
continuous-tone and discrete-tone parts, and compress each separately.

5.1 Introduction

Modern computers employ graphics extensively. Window-based operating systems dis-
play the computer’s file directory graphically. The progress of many system operations,
such as downloading a file, may also be displayed graphically. Many applications pro-
vide a graphical user interface (GUI), which makes it easier to use the program and to
interpret displayed results. Computer graphics is used in many areas in everyday life
to convert many types of complex information to images. Thus, images are important,
but they tend to be big! Modern hardware can display many colors, which is why it is
common to have a pixel represented internally as a 24-bit number, where the percent-
ages of red, green, and blue occupy 8 bits each. Such a 24-bit pixel can specify one of
224 ~ 16.78 million colors. As a result, an image at a resolution of 512x512 that consists
of such pixels occupies 786,432 bytes. At a resolution of 1024 x 1024 it becomes four
times as big, requiring 3,145,728 bytes. Videos are also commonly used in computers,
making for even bigger images. This is why image compression is so important. An im-
portant feature of image compression is that it can be lossy. An image, after all, exists
for people to look at, so, when it is compressed, it is acceptable to lose image features

5.1 Introduction 145

to which the eye is not sensitive. This is one of the main ideas behind the many lossy
image compression methods that have been developed in recent decades.

In general, information can be compressed if it is redundant. It has been mentioned
in the Introduction that data compression amounts to reducing or removing redundancies
that exist in the data. With lossy compression, however, we have a new concept, namely
compressing by removing irrelevancy. An image can be lossy-compressed by removing
irrelevant information, even if the original image does not have any redundancy.

Exercise 5.1: It would seem that an image with no redundancy is always random (and
therefore uninteresting). It that so?

This chapter discusses methods for image compression. The methods and ap-
proaches are all different, but they remove redundancy from an image by using the
following principle:

The principle of natural image compression. If we select a pixel in the image
at random, there is a good chance that its neighbors will have the same color or very
similar colors.

Image compression is therefore based on the fact that neighboring pixels are highly
correlated. This correlation is also called spatial redundancy.

Here is a simple example that illustrates what can be done with correlated pixels.
The following sequence of values gives the intensities of 24 adjacent pixels in a row of a
continuous-tone image:

12, 17, 14, 19, 21, 26, 23, 29, 41, 38, 31, 44, 46, 57, 53, 50, 60, 58, 55, 54, 52, 51, 56, 60.

Only two of the 24 pixels are identical. Their average value is 40.3. Subtracting pairs
of adjacent pixels results in the sequence

12,5, -3, 5,2, 4, -3, 6, 11, -3, —7, 13, 4, 11, —4, —3, 10, —2, —3, 1, -2, —1, 5, 4.

The two sequences are illustrated graphically in Figure 5.1.

Figure 5.1: Values and Differences of 24 Adjacent Pixels.

The sequence of difference values has three properties that illustrate its compression
potential: (1) The difference values are smaller than the original pixel values. Their
average is 2.58. (2) They repeat. There are just 15 distinct difference values, so in
principle they can be coded by four bits each. (3) They are decorrelated: adjacent

146 5. Image Compression

difference values tend to be different. This can be seen by subtracting them, which
results in the sequence of 24 second differences

12, -7, 8,8, —3,2, -7, 9,5, —14, —4, 20, —11, 7, —15, 1, 13, —12, —1, 4, -3, 1, 6, 1,

which are larger than the differences themselves.

The principle of image compression has another aspect. We know from experience
that the brightness of neighboring pixels is also correlated. Two adjacent pixels may
have different colors. One may be mostly red, and the other may be mostly green.
Yet if the red component of the first is bright, the green component of its neighbor
will, in most cases, also be bright. This property can be exploited by converting pixel
representations from RGB to three other components, one of which is the brightness,
and the other two represent color. One such representation (or color space) is YCbCr,
where Y (the “luminance” component) represents the brightness of a pixel, and Cb and
Cr specify its color. This format is discussed in Section 5.6.1 and its advantage is easy
to understand. The eye is sensitive to small variations in brightness but not to small
changes in color. Thus, losing information in the Cb and Cr components compresses the
image while introducing distortions to which the eye is not sensitive. Losing information
in the Y component, on the other hand, is very noticeable to the eye.

An extreme example of pixel correlation is the interesting 4096 x 4096 color image
found at [brucelindbloom 07]. Every pair of adjacent pixels in this image differ by one
unit of RGB color and therefore they are highly correlated. The following is a quotation
from this reference:

“Although the image contains 16 million pixels (a 48 Mb uncompressed image), it
compresses very nicely, resulting in a surprisingly small download file. Click here for a
ZIP download (53K) or here for a SIT download (36K).”

5.2 Approaches to Image Compression

An image compression method is normally tailored for a specific type of image, and
this section lists various approaches to compressing images of different types. Only the
general principles are discussed here; specific methods are described in the remainder of
this chapter.

Approach 1: This is appropriate for bi-level images. A pixel in such an image is
represented by one bit. Applying the principle of image compression to a bi-level image
therefore means that the immediate neighbors of a pixel P tend to be identical to P.
Thus, it makes sense to use run-length encoding (RLE) to compress such an image. A
compression method for such an image may scan it in raster order (row by row) and
compute the lengths of runs of black and white pixels in each row. The lengths are
encoded by variable-length (prefix) codes and are written on the output. An example
of such a method is facsimile compression, Section 2.4.

It should be stressed that this is just an approach to bi-level image compression.
The details of specific methods vary. For instance, a method may scan the image column
by column or in zigzag (Figure 1.12b), it may convert the image to a quadtree, or it may
scan it region by region using a space-filling curve.

5.2 Approaches to Image Compression 147

Approach 2: Also for bi-level images. The principle of image compression tells us that
the neighbors of a pixel tend to be similar to the pixel. We can extend this principle
and conclude that if the current pixel P has color ¢ (where ¢ is either black or white),
then pixels of the same color seen in the past (and also those that will be found in the
future) tend to have the same immediate neighbors as P.

This approach looks at n of the near neighbors of the current pixel and considers
them as an n-bit number. This number is the context of the pixel. In principle there
can be 2™ contexts, but because of image redundancy we expect them to be distributed
in a nonuniform way. Some contexts should be common, while others will be rare.

The encoder counts how many times each context has already been found for a pixel
of color ¢, and assigns probabilities to the contexts accordingly. If the current pixel has
color ¢ and its context has probability p, the encoder can use adaptive arithmetic coding
to encode the pixel with that probability. This approach is used by the JBIG compression
standard [Salomon 07].

Next, we turn to grayscale images. A pixel in such an image is represented by n

bits and can have one of 2™ values. Applying the principle of image compression to a
grayscale image implies that the immediate neighbors of a pixel P tend to be similar to
P, but are not necessarily identical. Thus, RLE should not be used to compress such
an image. Instead, two alternative approaches are discussed.
Approach 3: Separate the grayscale image into n bi-level images and compress each
with RLE and prefix codes. The principle of image compression seems to imply intu-
itively that two adjacent pixels that are similar in the grayscale image will be identical
in most of the n bi-level images. This, however, is not true, as the following example
makes clear. Imagine a grayscale image with n = 4 (i.e., 4-bit pixels, or 16 shades of
gray). The image can be separated into four bi-level images. If two adjacent pixels in
the original grayscale image have values 0000 and 0001, then they are similar. They
are also identical in three of the four bi-level images. However, two adjacent pixels with
values 0111 and 1000 are also similar in the grayscale image (their values are 7 and 8,
respectively) but differ in all four bi-level images.

This problem occurs because the binary codes of adjacent integers may differ by
several bits. The binary codes of 0 and 1 differ by one bit, those of 1 and 2 differ by two
bits, and those of 7 and 8 differ by four bits. The solution is to design special binary
codes such that the codes of any consecutive integers i and i + 1 will differ by one bit
only. An example of such a code is the reflected Gray codes of Section 5.2.1.
Approach 4: Use the context of a pixel to predict its value. The context of a pixel is
the values of some of its near neighbors. We can examine some neighbors of a pixel P,
compute an average A of their values, and predict that P will have the value A. The
principle of image compression tells us that our prediction will be correct in most cases,
almost correct in many cases, and terribly wrong in a few cases. We can say that the
predicted value of pixel P represents the redundant information in P. We now calculate

the difference
def

A= P-—A,
and assign variable-length (prefix) codes to the different values of A such that small
values (which we expect to be common) are assigned short codes and large values (which
are expected to be rare) are assigned long codes. If P can have the values 0 through

148 5. Image Compression

m — 1, then values of A are in the range [—(m — 1), +(m — 1)], and the number of codes
needed is 2(m — 1) + 1 or 2m — 1.

Experiments with a large number of images suggest that the values of A tend to
be distributed according to the well-known Laplace distribution (see the Intermezzo
on page 178). A compression method can, therefore, use this distribution to assign a
probability to each value of A, and use arithmetic coding to encode the A values very
efficiently. This is the principle of the MLP method [Salomon 07].

The context of a pixel may consist of just one or two of its immediate neighbors.
However, better results may be obtained when several neighbor pixels are included in the
context. The average A in such a case should be weighted, with near neighbors assigned
higher weights (see, for example, Figure 5.2a,b). Another important consideration is the
decoder. In order for it to decode the image, it should be able to compute the context of
every pixel in the same way as the encoder. This means that the context should employ
only pixels that have already been encoded. If the image is scanned in raster order, the
context should include only pixels located above the current pixel or on the same row
and to its left (Figure 5.2c).

1 0.0039 0|0]0
9 -9 ~0.0351 —0.0351 0]0]|0|0]O
9 81 -9 —0.0351 03164 —0.0351 olo|P
1 981 8181 91 0.003900352.316403163.3164 0035(;0039 olololo
9 —9 00351 —0.0351 0]0/0]0
1 0.0039 O|O|P

Figure 5.2: (a) Sixteen Integer Weights. (b) Normalized. (c) Contexts.

Approach 5: Transform the values of the pixels and encode the transformed values.
The concept of a transform, as well as the most important transforms used in image
compression, are discussed in Section 5.3. Section 5.7 is devoted to subband transforms
(also referred to as wavelets). Recall that compression is achieved by reducing or re-
moving redundancy. The redundancy of an image is caused by the correlation between
pixels, so transforming the pixels to a representation where they are decorrelated elimi-
nates the redundancy. It is also possible to think of a transform in terms of the entropy
of the image. In a highly correlated image, the pixels tend to have equiprobable values,
which results in maximum entropy. If the transformed pixels are decorrelated, certain
pixel values become common, thereby having large probabilities, while others are rare.
This results in small entropy. Quantizing the transformed values can result in efficient
lossy image compression. We want the transformed values to be independent because
coding independent values makes it simpler to construct a statistical model.

We now turn to color images. A pixel in such an image consists of three color
components, such as red, green, and blue. Most color images are either continuous-tone
or discrete-tone.

Approach 6: The principle of this approach is to separate a continuous-tone color image
into three grayscale images and compress each of the three separately, using approaches
3, 4, or 5.

5.2 Approaches to Image Compression 149

For a continuous-tone image, the principle of image compression implies that adja-
cent pixels have similar, although perhaps not identical, colors. However, similar colors
do not imply similar pixel values. Consider, for example, 12-bit pixel values where each
color component is expressed in four bits. Thus, the 12 bits 1000]0100|0000 represent
a pixel whose color is a mixture of eight units of red (about 50%, since the maximum
is 15 units), four units of green (about 25%), and no blue. Now imagine two adjacent
pixels with values 0011/0101|0011 and 0010]0101|0011. They have similar colors, since
only their red components differ, and only by one unit. However, when considered as
12-bit numbers, the two numbers 001101010011 and 001001010011 are very different,
because they differ in one of their most significant bits.

An important feature of this approach is to use a luminance chrominance color rep-
resentation instead of the more common RGB. The concepts of luminance and chromi-
nance are discussed in Section 5.6.1 and in [Salomon 99]. The advantage of the luminance
chrominance color representation is that the eye is sensitive to small changes in lumi-
nance but not in chrominance. This allows the loss of considerable data in the chromi-
nance components, while making it possible to decode the image without a significant
visible loss of quality.

Approach 7: A different approach is needed for discrete-tone images. Recall that such
an image contains uniform regions, and a region may appear several times in the image.
A good example is a screen dump. Such an image consists of text and icons. FEach
character of text and each icon is a region, and any region may appear several times in
the image. A possible way to compress such an image is to scan it, identify regions, and
find repeating regions. If a region B is identical to an already-found region A, then B
can be compressed by writing a pointer to A on the output. The block decomposition
method (FABD [Salomon 07]) is an example of this approach.

Approach 8: Partition the image into parts (overlapping or not) and compress it by
processing the parts one by one. Suppose that the next unprocessed image part is part
number 15. Try to match it with parts 1-14 that have already been processed. If part
15 can be expressed, for example, as a combination of parts 5 (scaled) and 11 (rotated),
then only the few numbers that specify the combination need be saved, and part 15
can be discarded. If part 15 cannot be expressed as a combination of already-processed
parts, it is declared processed and is saved in raw format.

This approach is the basis of the various fractal methods for image compression.
It applies the principle of image compression to image parts instead of to individual
pixels. Applied this way, the principle tells us that “interesting” images (i.e., those that
are being compressed in practice) have a certain amount of self-similarity. Parts of the
image are identical or similar to the entire image or to other parts.

Image compression methods are not limited to these basic approaches. The many
image compression methods developed during the last several decades employ many dif-
ferent concepts and techniques such as context trees, Markov models, and wavelets. In
addition, the concept of progressive image compression [Salomon 07] should be men-
tioned, because it adds another dimension to the topic of image compression.

5.2.1 Gray Codes

An image compression method that has been developed specifically for a certain image
type can sometimes be used for other types. Any method for compressing bi-level images,

150 5. Image Compression

for example, can be used to compress grayscale images by separating the bitplanes and
compressing each individually, as if it were a bi-level image. Imagine, for example, an
image with 16 grayscale values. Each pixel is defined by four bits, so the image can be
separated into four bi-level images. The trouble with this approach is that it violates
the general principle of image compression. Imagine two adjacent 4-bit pixels with
values 7 = 01115 and 8 = 10002. These pixels have similar values, but when separated
into four bitplanes, the resulting 1-bit pixels are different in every bitplane! This is
because the binary representations of the consecutive integers 7 and 8 differ in all four
bit positions. In order to apply any bi-level compression method to grayscale images,
a binary representation of the integers is needed where consecutive integers have codes
differing by one bit only. Such a representation exists and is called reflected Gray code
(RGC). This code is easy to generate with the following recursive construction:

Start with the two 1-bit codes (0, 1). Construct two sets of 2-bit codes by duplicating
(0,1) and appending, either on the left or on the right, first a 0, then a 1, to the
original set. The result is (00,01) and (10, 11). Now reverse (reflect) the second set and
concatenate the two. The result is the 2-bit RGC (00,01, 11, 10); a binary code of the
integers 0 through 3 where consecutive codes differ by exactly one bit. Applying the
rule again produces the two sets (000,001,011,010) and (110,111,101, 100), which are
concatenated to form the 3-bit RGC. Note that the first and last codes of any RGC also
differ by one bit. Here are the first three steps for computing the 4-bit RGC:

Add a zero (0000,0001,0011,0010,0110,0111,0101,0100),
add a one (1000,1001,1011,1010,1110,1111, 1101, 1100),
reflect (1100,1101,1111,1110, 1010, 1011, 1001, 1000).

43210 Gray 43210 Gray 43210 Gray 43210 Gray
00000 00000 01000 10010 10000 00011 11000 10001
00001 00100 01001 10110 10001 00111 11001 10101
00010 01100 01010 11110 10010 01111 11010 11101
00011 01000 01011 11010 10011 01011 11011 11001
00100 11000 01100 01010 10100 11011 11100 01001
00101 11100 01101 01110 10101 11111 11101 01101
00110 10100 01110 00110 10110 10111 11110 00101
00111 10000 01111 00010 10111 10011 11111 00001

function b=rgc(a,i)

[r,c]l=size(a);

b=[zeros(r,1),a; ones(r,1),flipud(a)];
if i>1, b=rgc(b,i-1); end;

Table 5.3: First 32 Binary and Reflected Gray Codes.

Table 5.3 shows how individual bits change when moving through the binary codes

5.2 Approaches to Image Compression 151

of the first 32 integers. The 5-bit binary codes of these integers are listed in the odd-
numbered columns of the table, with the bits of integer ¢ that differ from those of i — 1
shown in boldface. It is easy to see that the least-significant bit (bit bg) changes all
the time, bit b; changes for every other number, and, in general, bit b; changes every
k integers. The even-numbered columns list one of the several possible reflected Gray
codes for these integers. The table also lists a recursive Matlab function to compute

RGC.

Exercise 5.2: It is also possible to generate the reflected Gray code of an integer n
with the following nonrecursive rule: Exclusive-OR n with a copy of itself that’s logically
shifted one position to the right. In the C programming language this is denoted by
n~ (n>>1). Use this expression to construct a table similar to Table 5.3.

The conclusion is that the most-significant bitplanes of an image obey the principle
of image compression more than the least-significant ones. When adjacent pixels have
values that differ by one unit (such as p and p+ 1), chances are that the least-significant
bits are different and the most-significant ones are identical. Any image compression
method that compresses bitplanes individually should therefore treat the least-significant
bitplanes differently from the most-significant ones, or should use RGC instead of the
binary code to represent pixels.

“@> Intermezzo L 3

History of Gray Codes. Gray codes are named after Frank Gray, who patented
their use for shaft encoders in 1953 [Gray 53]. However, the work was performed much
earlier, the patent being applied for in 1947. Gray was a researcher at Bell Telephone
Laboratories. During the 1930s and 1940s he was awarded numerous patents for work
related to television. According to [Heath 72] the code was first, in fact, used by J. M.
E. Baudot for telegraphy in the 1870s, though it is only since the advent of computers
that the code has become widely known.

The Baudot code uses five bits per symbol. It can represent 32x2—2 = 62 characters
(each code can have two meanings, the meaning being indicated by the LS and FS codes).
It became popular and, by 1950, was designated the International Telegraph Code No. 1.
It was used by many first- and second-generation computers.

The August 1972 issue of Scientific American contains two articles of interest, one
on the origin of binary codes [Heath 72], and another [Gardner 72] on some entertaining
aspects of the Gray codes.

The binary Gray code is fun,

For in it strange things can be done.
Fifteen, as you know,

Is one, oh, oh, oh,

And ten is one, one, one, one.

—Anonymous

What do the English words FAST, THROUGH, DOWN, AWAY, WATER and NECK have in
common?

152 5. Image Compression

5.3 Image Transforms

The mathematical technique of a transform is a powerful tool that is employed in many
areas and can also serve as an approach to image compression. The prelude to Chapter 1
discusses this concept and describes a simple transform involving Roman numerals. An
image can be compressed by transforming its pixels (which are correlated) to a rep-
resentation where they are decorrelated. Compression is achieved if the new values
are smaller, on average, than the original ones. Lossy compression can be achieved by
quantizing the transformed values. The decoder inputs the transformed values from
the compressed file and reconstructs the (precise or approximate) original data by ap-
plying the inverse transform. The transforms discussed in this section are orthogonal.
Section 5.7.1 discusses subband transforms.

The term “decorrelated” implies that the transformed values are independent of
one another. As a result, they can be encoded independently, which makes it simpler
to construct a statistical model. An image can be compressed if its representation has
redundancy. The redundancy in images stems from pixel correlation. If we transform
the image to a representation where the pixels are decorrelated, we have eliminated the
redundancy and the image has been fully compressed.

We start with a simple example of a transform. Given an image, it is scanned in
raster order and pairs of adjacent pixels are prepared. Because the pixels are correlated,
the two pixels (z,y) of a pair normally have similar values. We now consider each pair
of pixels as a point in two-dimensional space, and we plot the points. We know that all
the points of the form (z, z) are located on the 45° line y = x, so we expect our points to
be concentrated around this line. Figure 5.4a shows the results of plotting the pixels of
a typical image—where a pixel has values in the interval [0,255]—in such a way. Most
points form a cloud around this line, and only a few points are located away from it.
We now transform the image by rotating all the points 45° clockwise about the origin,
such that the 45° line now coincides with the x-axis (Figure 5.4b). This is done by the
simple transformation

oy cos45° —sind5°\ 1 /1 -1\ _
({E Y) - (l’,y) (sin45° cos 45°) - (‘/L’ay)ﬁ (1 1) - (.’L’7y)R, (51)

where the rotation matrix R is orthonormal (i.e., the dot product of a row with itself is
1, the dot product of different rows is 0, and the same is true for columns). The inverse
transformation is

@ =R =R =) (g p)e 62

(The inverse of an orthonormal matrix is its transpose.)

It is obvious that most points end up with y coordinates that are zero or close to zero,
while the x coordinates don’t change much. Figure 5.5a,b shows the distributions of the x
and y coordinates (i.e., the odd-numbered and even-numbered pixels) of the 128 x 128 x 8
grayscale Lena image before the rotation. It is clear that the two distributions don’t
differ by much. Figure 5.5¢,d shows that the distribution of the x coordinates stays
about the same (with greater variance) but the y coordinates are concentrated around

255 t

128

127

50

-50

—128

5.3 Image Transforms

128

255

Figure 5.4: Rotating a Cloud of Points.

153

154

5. Image Compression

|- (@
(© e MJ

100 150 200 250 300 350 0 50 100 150 200 250 300

filename=’lenal28’; dim=128;
xdist=zeros(256,1); ydist=zeros(256,1);
fid=fopen(filename,’r’);
img=fread(fid, [dim,dim])’;
for col=1:2:dim-1
for row=1:dim
x=img(row,col)+1; y=img(row,col+1)+1;
xdist(x)=xdist(x)+1; ydist(y)=ydist(y)+1;
end
end
figure(1), plot(xdist), colormap(gray) %dist of x&y values
figure(2), plot(ydist), colormap(gray) %before rotation
xdist=zeros(325,1); % clear arrays
ydist=zeros(256,1);
for col=1:2:dim-1
for row=1:dim
x=round ((img(row, col)+img(row,col+1))*0.7071);
y=round ((-img(row, col)+img(row,col+1))*0.7071)+101;
xdist(x)=xdist(x)+1; ydist(y)=ydist(y)+1;
end
end
figure(3), plot(xdist), colormap(gray) %dist of x&y values
figure(4), plot(ydist), colormap(gray) ‘%after rotation

Figure 5.5: Distribution of Image Pixels Before and After Rotation.

5.3 Image Transforms 155

zero. The Matlab code that generated these results is also shown. (Figure 5.5d shows
that the y coordinates are concentrated around 100, but this is because a few were as
small as —101, so they had to be scaled by 101 to fit in a Matlab array, which always
starts at index 1.)

Once the coordinates of points are known before and after the rotation, it is easy to
measure the reduction in correlation. A simple measure is the sum). x;y;, also called
the cross-correlation of points (z;, ;).

Exercise 5.3: Given the five points (5,5), (6,7), (12.1,13.2), (23,25), and (32,29),
rotate them 45° clockwise and calculate their cross-correlations before and after the
rotation.

We can now compress the image by simply writing the transformed pixels on the
output. If lossy compression is acceptable, then all the pixels can be quantized (Sec-
tion 1.5), resulting in even smaller numbers. We can also write all the odd-numbered
pixels (those that make up the x coordinates of the pairs) on the output, followed by all
the even-numbered pixels. These two sequences are called the coefficient vectors of the
transform. The latter sequence consists of small numbers and may, after quantization,
have runs of zeros, resulting in even better compression.

It can be shown that the total variance of the pixels does not change by the rotation,
because a rotation matrix is orthonormal. However, since the variance of the new y
coordinates is small, most of the variance is now concentrated in the x coordinates. The
variance is sometimes called the energy of the distribution of pixels, so we can say that
the rotation has concentrated (or compacted) the energy in the x coordinate and has
created compression in this way.

Concentrating the energy in one coordinate has another advantage. It makes it
possible to quantize that coordinate more finely than the other coordinates. This type
of quantization results in better (lossy) compression.

The following simple example illustrates the power of this basic transform. We start
with the point (4, 5), whose two coordinates are similar. Using Equation (5.1) the point
is transformed to (4,5)R = (9,1)/v/2 =~ (6.36396, 0.7071). The energies of the point and
its transform are 4% + 52 = 41 = (92 + 12)/2. If we delete the smaller coordinate (4) of
the point, we end up with an error of 42/41 = 0.39. If, on the other hand, we delete the
smaller of the two transform coefficients (0.7071), the resulting error is just 0.7071% /41 =
0.012. Another way to obtain the same error is to consider the reconstructed point.
Passing %(97 1) through the inverse transform [Equation (5.2)] results in the original
point (4,5). Doing the same with %(9,0) results in the approximate reconstructed
point (4.5,4.5). The energy difference between the original and reconstructed points is
the same small quantity

(4% +5%) — (4.5 + 4.5?)] _ 41405 0.0012
42 4 52 41 ' '

This simple transform can easily be extended to any number of dimensions. Instead
of selecting pairs of adjacent pixels we can select triplets. Each triplet becomes a point
in three-dimensional space, and these points form a cloud concentrated around the line
that forms equal (although not 45°) angles with the three coordinate axes. When this

156 5. Image Compression

line is rotated such that it coincides with the z-axis, the y and z coordinates of the
transformed points become small numbers. The transformation is done by multiplying
each point by a 3 x 3 rotation matrix, and such a matrix is, of course, orthonormal. The
transformed points are then separated into three coefficient vectors, of which the last
two consist of small numbers. For maximum compression, each coefficient vector should
be quantized separately.

This can be extended to more than three dimensions, with the only difference
being that we cannot visualize spaces of dimensions higher than three. However, the
mathematics can easily be extended. Some compression methods, such as JPEG, divide
an image into blocks of 8 x 8 pixels each, and rotate first each row then each column of a
block by means of Equation (5.6), as shown in Section 5.5. This double rotation produces
a set of 64 transformed values, of which the first—termed the “DC coefficient”—is large,
and the other 63 (called the “AC coefficients”) are normally small. Thus, this transform
concentrates the energy in the first of 64 dimensions. The set of DC coefficients and
each of the sets of 63 AC coefficients should, in principle, be quantized separately (JPEG
does this a little differently, though; see Section 5.6.3).

5.4 Orthogonal Transforms

Image transforms are designed to have two properties: (1) to reduce image redundancy
by reducing the sizes of most pixels and (2) to identify the less important parts of the
image by isolating the various frequencies of the image. Thus, this section starts with a
short discussion of frequencies. We intuitively associate a frequency with a wave. Water
waves, sound waves, and electromagnetic waves have frequencies, but pixels in an image
can also feature frequencies. Figure 5.6 shows a small, 5x8 bi-level image that illustrates
this concept. The top row is uniform, so we can assign it zero frequency. The rows below
it have increasing pixel frequencies as measured by the number of color changes along a
row. The four waves on the right roughly correspond to the frequencies of the four top
rows of the image.

(LT
EEEE | | |
N | | | EN

EE | NN |
(.

Figure 5.6: Image Frequencies.

An example of a high-frequency image is bright stars on a dark sky. An example of
a low-frequency image is a uniform wall, where all the points have identical or similar
colors.

Image frequencies are important because of the following basic fact: Low frequencies
correspond to the important image features, whereas high frequencies correspond to the
details of the image, which are less important. Thus, when a transform isolates the
various image frequencies, pixels that correspond to high frequencies can be quantized

5.4 Orthogonal Transforms 157

heavily, whereas pixels that correspond to low frequencies should be quantized lightly
or not at all. This is how a transform can compress an image very effectively by losing
information, but only information that corresponds to unimportant image details.
Practical image transforms should be fast and preferably also simple to implement.
This suggests the use of linear transforms. In such a transform, each transformed value
(or transform coefficient) ¢; is a weighted sum of the data items (the pixels) d; that are
being transformed, where each item is multiplied by a weight w;;. Thus, ¢; =)" j djw;;,

fori,j =1,2,...,n. For n =4, this is expressed in matrix notation:
C1 w11 Wiz Wiz Wi4 dq
co | | war w2 waz wWo do
3 w31 W32 W33 W34 d3
Cq W41 W42 W43 W44 dy

In general, we can write C = W-D. Each row of W is called a basis vector.
The only quantities that have to be determined are the weights w;;. The guiding
principles are as follows:

1. Reducing redundancy. The first transform coefficient ¢; can be large, but the
remaining values co, cs, ... should be small.

2. Isolating frequencies. The first transform coefficient ¢; should correspond to zero
pixel frequency, and the remaining coefficients should correspond to higher and higher
frequencies.

The key to determining the weights w;; is the fact that our data items d; are not
arbitrary numbers but pixel values and therefore nonnegative and correlated.

The basic relation ¢; = Y j djw;; suggests that the first coefficient ¢; will be large
if all the weights of the form w;; are positive. To make the other coefficients ¢; small,
it is enough to make half the weights w;; positive and the other half negative. A simple
choice is to assign half the weights the value +1 and the other half the value —1. In the
extreme case where all the pixels d; are identical, this will result in ¢; = 0. When the
d; are similar, ¢; will be small (positive or negative).

This choice of w;; satisfies the first requirement: to reduce pixel redundancy by
means of a transform. In order to satisfy the second requirement, the weights w;; of
row % should feature frequencies that get higher with ¢. Weights w;; should have zero
frequency; they should all be +1’s. Weights wy; should have one sign change; i.e.,
they should be +1,+1,...,+1,—1,—1,...,—1. This argument is applied to the other
rows with more and more sign changes, until the last row of weights w,; receives the
highest frequency +1,—1,+1,—1,...,4+1,—1. The mathematical discipline of vector
spaces employs the term “basis vectors” for our rows of weights.

In addition to isolating the various frequencies of pixels d;, this choice results in
basis vectors that are orthogonal. The basis vectors are the rows of matrix W, which is
why this matrix and by implication, the entire transform, are also termed orthogonal.

These considerations are satisfied by the orthogonal matrix

1 1 1 1
1 1 -1 -1

1 -1 -1 1 (5.3)
1

-1 1 -1

158 5. Image Compression

The first basis vector (the top row of W) consists of all 1’s, so its frequency is zero. Each
of the subsequent vectors has two +1’s and two —1’s, so they produce small transformed
values, and their frequencies (measured as the number of sign changes along the basis
vector) become higher.

To illustrate how this matrix identifies the frequencies in a data vector, we mul-
tiply it by the following test vectors (1,0,0,1), (0,0.33,—0.33,—1), (1,0,0,0), and
(1,—0.8,1,—0.8). The results are

1 2 0 0 1 1 1 0.4
0 0 0.33 2.66 0 1 -0.8 0
w o |2’ w -033| | 0 | w o |1’ w 1)
1 0 -1 1.33 0 1 -0.8 3.6

The results make sense when we discover how the four test vectors were determined

(1,0,0,1) = 0.5(1,1,1,1) + 0.5(1, =1, —1,1),
(1,0.33,-0.33,—1) = 0.66(1,1,—1,—1) + 0.33(1,—1,1, 1),
(1,0,0,0) = 0.25(1,1,1,1) + 0.25(1,1,—1,—1) + 0.25(1, —1,—1,1) + 0.25(1, —1,1, 1),
(1,-0.8,1,-0.8) = 0.1(1,1,1,1) + 0.9(1, -1, 1, —1).

The product of W and the first vector is (2,0,2,0), indicating how that vector con-
sists of equal amounts of the first and the third frequencies. Similarly, the transform
(0.4,0,0,3.6) shows that vector (1,—0.8,1,—0.8) is a mixture of a small amount of the
first frequency and nine times the fourth frequency.

It is also possible to modify this transform to conserve the energy of the data
vector. All that’s needed is to multiply the transformation matrix W by the scale
factor 1/2. Thus, the product (W/2)x (a, b, c,d) has the same energy a? + b + % + d?
as the data vector (a,b,c,d). An example is the product of W/2 and the correlated
vector (5,6,7,8). It results in the transform coefficients (13, —2,0,—1), where the first
coefficient is large and the remaining ones are smaller than the original data items. The
energy of both (5,6,7,8) and (13,—2,0, —1) is 174, but whereas in the former vector the
first component accounts for only 14% of the energy, in the transformed vector the first
component accounts for 97% of the energy. This is how our simple orthogonal transform
compacts the energy of the data vector.

Another advantage of W is that it also performs the inverse transform. The product
(W/2)-(13,-2,0,—1)T reconstructs the original data (5,6,7,8).

We are now in a position to appreciate the compression potential of this transform.
We use matrix W/2 to transform the (not very correlated) data vector d = (4,6,5,2).
The result is ¢ = (8.5,1.5,—2.5,0.5). It’s easy to transform ¢ back to d, but ¢ itself
does not provide any compression. In order to achieve compression, we encode the AC
coefficients of ¢ by replacing them with variable-length codes, but the real power of an
orthogonal transform becomes apparent when we choose lossy compression. In this case,
we quantize the components of ¢ before they are encoded, and the point is that even after
heavy quantization, it is still possible to get back a vector very similar to the original d.

We first quantize ¢ to the integers (9,1, —3,0) and perform the inverse transform
to get back (3.5,6.5,5.5,2.5). In a similar experiment, we completely delete the two

5.4 Orthogonal Transforms 159

smallest elements and inverse-transform the coarsely-quantized vector (8.5,0,—2.5,0).
This produces the reconstructed data (3,5.5, 5.5, 3), still very close to the original values
of d. The conclusion is that even this simple, intuitive transform is a powerful tool for
“squeezing out” the redundancy in data. More sophisticated transforms produce results
that can be quantized coarsely and still be used to reconstruct the original data to a
high degree.

5.4.1 Two-Dimensional Transforms
Given two-dimensional data such as the 4 x4 matrix
6 4
D =

co S N

5
6
7
8

0 = Ot

)
6)
8

where each of the four columns is highly correlated, we can apply our simple one-
dimensional transform to the columns of D. The result is

11 1 1 26 26 28 23
, [I S TS G | -4 -4 0 -5
C=WD=1, 4 1 1 |P={0o 2 2 1
1 -1 1 -1 -2 0 -2 -3

Each column of C’ is the transform of a column of D. Notice how the top element of
each column of C’ is dominant, because the data in the corresponding column of D is
correlated. Notice also that the four components of each row of C’ are still correlated.
C’ is the first stage in a two-stage process that produces the two-dimensional transform
of matrix D. The second stage should transform each row of C’, and this is done by
multiplying C’ by the transpose W7. Our particular W, however, is symmetric, so we
end up with C = C'"W' = W.D-W” = W-D-W or

26 26 28 23 1 1 1 1 103 1 -5 5
C— -4 -4 0 =5 1 -1 -1)y_(-13 -3 =5 5
0 2 2 1 1 -1 -1 1 5 -1 -3 -1
-2 0 -2 =3 1 -1 1 -1 -7 3 -3 -1

The elements of C are decorrelated. The top-left element is dominant (it is also the
sum of the 16 elements of D). Tt contains most of the total energy of the original D.
The elements in the top row and the leftmost column are somewhat large, while the
remaining elements are smaller than the original data items. The double-stage, two-
dimensional transformation has reduced the correlation in both the horizontal and ver-
tical dimensions. As in the one-dimensional case, excellent compression can be achieved
by quantizing the elements of C, especially those that correspond to higher frequencies
(i.e., located toward the bottom-right corner of C).

This is the essence of orthogonal transforms. The next section discusses the discrete
cosine transform (DCT), the most popular orthogonal transform, which is the heart of
several image and video compression algorithms, most notably JPEG and MPEG-1.

160 5. Image Compression
5.5 The Discrete Cosine Transform

This important transform (DCT for short) was first described by [Ahmed et al. 74] and
has been used and studied extensively since. Because of its importance for data com-
pression, the DCT is treated here in detail. Section 5.5.1 introduces the mathematical
expressions for the DCT in one dimension and two dimensions without any theoretical
background or justification. The use of the transform and its advantages for data com-
pression are then demonstrated by several examples. Section 5.5.2 covers the theory of
the DCT and discusses its interpretation as a basis of a vector space. More information
on this important technique, as well as an alternative interpretation, can be found in
[Salomon 07].

’ Cosine, the opposite of “stop sign.”

5.5.1 Introduction
The DCT in one dimension is defined by

n—1
2 2t +1
Gf\/70f5 ptcos{(j;n)ﬁr}, for f=0,1,...,n—1, (5.4)

t=0
where

1
1 =0
C — \/5’ f)
! {1, f>0.

The input is a set of n data values p; (pixels, audio samples, or other data), and the
output is a set of n DCT transform coefficients (or weights) Gy. The first coefficient
Gy is the DC coefficient, and the rest are the AC coefficients (these terms have been
inherited from electrical engineering, where they stand for “direct current” and “alter-
nating current”). Notice that the coefficients are real numbers even if the input data
consists of integers. Similarly, the coefficients may be positive or negative even if the
input data consists of nonnegative numbers only. This computation is straightforward
but slow (reference [Salomon 07] discusses faster versions). Equation (5.4) implies that
Gy, the DC coefficient, is given by

1= 1
Go = \/ngt = \/ﬁg >

and therefore equals \/% times the average of the n data values.

The decoder inputs the DCT coefficients in sets of n and uses the inverse DCT
(IDCT) to reconstruct the original data values (also in groups of n). The IDCT in one
dimension is given by

fZCGc [QHn) } fort =0,1,...,n—1. (5.5)

5.5 The Discrete Cosine Transform 161

The important feature of the DCT, which makes it so useful in data compression,
is that it takes correlated input data and concentrates its energy in just the first few
transform coefficients. If the input data consists of correlated quantities, then most of
the n transform coefficients produced by the DCT are zeros or small numbers, and only
a few are large (normally the first ones). We will see that the early coefficients contain
the important (low-frequency) image information and the later coefficients contain the
less-important (high-frequency) image information. Compressing a set of correlated
pixels with the DCT is therefore done by (1) computing the DCT coefficients of the
pixels, (2) quantizing the coefficients, and (3) encoding them with variable-length codes
or arithmetic coding. The small coefficients are quantized coarsely (possibly all the
way to zero), and the large ones can be quantized finely to the nearest integer. After
quantization, the coefficients (or variable-length codes assigned to the coefficients) are
written on the output. Decompression is done by performing the inverse DCT on the
quantized coefficients. This results in data items that are not identical to the original
ones but are not much different.

In practical applications, the data to be compressed is partitioned into sets of n
items each and each set is DCT-transformed and quantized individually. The value of
n is critical. Small values of n such as 3, 4, or 6 result in many small sets of data items.
Such a small set is transformed to a small set of coefficients where the energy of the
original data is concentrated in a few coefficients, but there are only a few coefficients
in such a set! Thus, there are not enough small coefficients to quantize. Large values of
n result in a few large sets of data. The problem in this case is that the individual data
items of a large set are normally not correlated and therefore result in a set of transform
coefficients where all the coefficients are large. Experience indicates that n = 8 is a good
value, and most data compression methods that employ the DCT use this value of n.

The following experiment illustrates the power of the DCT in one dimension. We
start with the set of eight correlated data items p = (12,10,8,10,12,10,8,11), apply
the DCT in one dimension to them, and find that it results in the eight coefficients

28.6375, 0.571202, 0.46194, 1.757, 3.18198, —1.72956, 0.191342, —0.308709.

(Notice that the DC coefficient equals v/8 times the average 10.125 of the eight items.)
These can be fed to the IDCT and transformed by it to precisely reconstruct the original
data (except for small errors caused by limited machine precision). Our goal, however,
is to compress (with lossy compression) the data by quantizing the coefficients. We first
quantize them to 28.6,0.6,0.5,1.8,3.2, —1.8,0.2, —0.3, and apply the IDCT to get back

12.0254, 10.0233, 7.96054, 9.93097, 12.0164, 9.99321, 7.94354, 10.9989.

We then quantize the coefficients even more, to 28,1, 1, 2,3, —2,0, 0, and apply the IDCT
to get back

12.1883, 10.2315, 7.74931, 9.20863, 11.7876, 9.54549, 7.82865, 10.6557.

Finally, we quantize the coefficients to 28,0,0,2,3,—2,0,0, and still get back from the
IDCT the sequence

11.236, 9.62443, 7.66286, 9.57302, 12.3471, 10.0146, 8.05304, 10.6842,

162 5. Image Compression

where the largest difference between an original value (12) and a reconstructed one
(11.236) is 0.764 (or 6.4% of 12). The code that does all that is listed in Figure 5.7.

n=8;

p={12.,10.,8.,10.,12.,10.,8.,11.3};

c=Table[If[t==1, 0.7071, 1], {t,1,n}];
dct[i_]:=Sqrt[2/nlc[[i+1]]1Sum[p[[t+1]]1Cos[(2t+1)i Pi/16],{t,0,n-1}];
g=Table[dct[i],{i,0,n-1}] (* use precise DCT coefficients *)
q={28,0,0,2,3,-2,0,0}; (* or use quantized DCT coefficients *)
idct[t_]:=Sqrt[2/n]Sum[c[[j+1]11q[[j+1]1]1Cos[(2t+1)j Pi/16],{j,0,n-1}];
ip=Table[idct[t],{t,0,n-1}]

Figure 5.7: Experiments with the One-Dimensional DCT.

It seems magical that the eight original data items can be reconstructed to such
high precision from just four transform coefficients. The explanation, however, relies on
the following arguments instead of on magic: (1) The IDCT is given all eight transform
coefficients, so it knows the positions, not just the values, of the nonzero coefficients.
(2) The first few coefficients (the large ones) contain the important information of the
original data items. The small coefficients, the ones that are quantized heavily, contain
less important information (in the case of images, they contain the image details). (3)
The original data is correlated.

Exercise 5.4: The quantization error between a vector X = z1,%s,...,T, and its
quantized representation X = &1, &2, ..., 2y is defined as E = S (= &1)2

Use the set of eight correlated data items p = (12,10,8,10,12,10,8,11) and the
three quantizations of the previous experiment to compute (1) the error between the
original items and their quantized DCT coefficients and (2) the error between the original
items and the quantized items obtained after the IDCT. Compare the results of (1) and
(2). Is there anything surprising about the results? Can this comparison be useful?

The following experiment illustrates the performance of the DCT when applied to
decorrelated data items. Given the eight decorrelated data items —12, 24, —181, 209,
57.8, 3, —184, and —250, their DCT produces

—117.803, 166.823, —240.83, 126.887, 121.198, 9.02198, —109.496, —185.206.

When these coefficients are quantized to (—120, 170, —240, 125,120,9, —110, —185) and
fed into the IDCT, the result is

—12.1249, 25.4974, —179.852, 208.237, 55.5898, 0.364874, —185.42, —251.701,
where the maximum difference (between 3 and 0.364874) is 2.63513 or 88% of 3. Ob-

viously, even with such fine quantization the reconstruction is not as good as with
correlated data.

5.5 The Discrete Cosine Transform 163

o Exercise 5.5: Compute the one-dimensional DCT [Equation (5.4)] of the eight corre-
lated values 11, 22, 33, 44, 55, 66, 77, and 88. Show how to quantize them, and compute
their IDCT from Equation (5.5).

The DCT in one dimension can be used to compress one-dimensional data, such
as a set of audio samples. This chapter, however, discusses image compression which is
based on the two-dimensional correlation of pixels (a pixel tends to resemble all its near
neighbors, not just those in its row). This is why practical image compression methods
use the DCT in two dimensions. This version of the DCT is applied to small parts (data
blocks) of the image. It is computed by applying the DCT in one dimension to each
row of a data block, then to each column of the result. Because of the special way the
DCT in two dimensions is computed, we say that it is separable in the two dimensions.
Because it is applied to blocks of an image, we term it a “blocked transform.” It is
defined by

Gijzﬁ[CC nz:lmz:lpxycos[yt;)jﬂ] cos {W}, (5.6)

=0 y=0

for0<i<n—1and 0<j<m—1and for C; and C; defined by Equation (5.4). The
first coefficient G is termed the DC coefficient and is large. The remaining coefficients,
which are much smaller, are called the AC coefficients.

The image is broken up into blocks of nxm pixels p,, (with n =m = 8 typically),
and Equation (5.6) is used to produce a block of nxm DCT coefficients G;; for each
block of pixels. The top-left coefficient (the DC) is large, and the AC coefficients become
smaller as we move from the top-left to the bottom-right corner. The top row and the
leftmost column contain the largest AC coefficient, and the remaining coefficients are
smaller. This behavior justifies the zigzag sequence illustrated by Figure 1.12b.

The coefficients are then quantized, which results in lossy but highly efficient com-

pression. The decoder reconstructs a block of quantized data values by computing the
IDCT whose definition is

zOJO

1 _
where C'f{i/ﬁ’ ;;8

for0 <z <n—-1and 0 <y <m—1. We now show one way to compress an entire
image with the DCT in several steps as follows:

1. The image is divided into k£ blocks of 8 x 8 pixels each. The pixels are denoted
by pay. If the number of image rows (columns) is not divisible by 8, the bottom row
(rightmost column) is duplicated as many times as needed.

2. The DCT in two dimensions [Equation (5.6)] is applied to each block B;. The

result is a block (we'll call it a vector) W) of 64 transform coefficients w(2 (where

164 5. Image Compression

j=0,1,...,63). The k vectors W@ become the rows of matrix W

1 1 1
i
—_— w? Wes
(k ik k
A)
3. The 64 columns of W are denoted by C© Cc® . . C©3) The k elements

of CU) are (w§1), w§-2), e ,wék)). The first coefficient vector C(©) consists of the k DC

coefficients.

4. Each vector CU) is quantized separately to produce a vector Q) of quantized
coefficients (JPEG does this differently; see Section 5.6.3). The elements of Q) are
then written on the output. In practice, variable-length codes are assigned to the ele-
ments, and the codes, rather than the elements themselves, are written on the output.
Sometimes, as in the case of JPEG, variable-length codes are assigned to runs of zero
coeflicients, to achieve better compression.

In practice, the DCT is used for lossy compression. For lossless compression (where
the DCT coefficients are not quantized) the DCT is inefficient but can still be used, at
least theoretically, because (1) most of the coefficients are small numbers and (2) there
are often runs of zero coefficients. However, the small coefficients are real numbers, not
integers, so it is not clear how to write them in full precision on the output and still
achieve compression. Other image compression methods are better suited for lossless
image compression.

The decoder reads the 64 quantized coefficient vectors QU) of k elements each, saves
them as the columns of a matrix, and considers the k rows of the matrix weight vectors
W of 64 elements each (notice that these W) are not identical to the original W)
because of the quantization). It then applies the IDCT [Equation (5.7)] to each weight
vector, to reconstruct (approximately) the 64 pixels of block B;. (Again, JPEG does
this differently.)

We illustrate the performance of the DCT in two dimensions by applying it to two
blocks of 8 x 8 values. The first block (Table 5.8a) has highly correlated integer values
in the range [8,12], and the second block has random values in the same range. The
first block results in a large DC coefficient, followed by small AC coefficients (including
20 zeros, Table 5.8b, where negative numbers are underlined). When the coefficients are
quantized (Table 5.8¢), the result, shown in Table 5.8d, is very similar to the original
values. In contrast, the coefficients for the second block (Table 5.9b) include just one
zero. When quantized (Table 5.9¢) and transformed back, many of the 64 results are
very different from the original values (Table 5.9d).

Exercise 5.6: Explain why the 64 values of Table 5.8a are correlated.

The next example illustrates the difference in the performance of the DCT when
applied to a continuous-tone image and to a discrete-tone image. We start with the
highly correlated pattern of Table 5.10. This is an idealized example of a continuous-tone
image, since adjacent pixels differ by a constant amount except the pixel (underlined) at
row 7, column 7. The 64 DCT coefficients of this pattern are listed in Table 5.11. It is

5.5 The Discrete Cosine Transform 165

1210 81012 10 8 11 88 0 0 0 0 0 0 O
11 1210 8 10 12 10 8 0 1.57 0.61 1.90 0.38 1.81 0.20 0.32
8 11 12 10 8 10 12 10 0 0.61 0.71 0.35 0 0.07 0 0.02
10 8111210 8 10 12 0 1.90 0.35 4.76 0.77 3.39 0.25 0.54
1210 8111210 8 10 0 0.38 0 0.77 8.00 0.51 0 0.07
10 12 10 8 11 12 10 8 0 1.81 0.07 3.39 0.51 1.57 0.56 0.25
810 12 10 8 11 12 10 0020 0025 00.560.71 0.29
10 81012 10 8 11 12 0 0.32 0.02 0.54 0.07 0.25 0.29 0.90

(a) Original data (b) DCT coefficients

810000000 12.29 10.26 7.92 9.93 11.51 9.94 8.18 10.97
02120200 10.90 12.06 10.07 7.68 10.30 11.64 10.17 8.18
01100000 7.83 11.39 12.19 9.62 8.28 10.10 11.64 9.94
02051301 10.15 7.74 11.16 11.96 9.90 8.28 10.30 11.51
00018100 12.21 10.08 8.15 11.38 11.96 9.62 7.68 9.93
02031210 10.09 12.10 9.30 8.15 11.16 12.19 10.07 7.92
00000110 7.87 9.50 12.10 10.08 7.74 11.39 12.06 10.26
00010001 9.66 7.87 10.09 12.21 10.15 7.83 10.90 12.29
(c) Quantized (d) Reconstructed data (good)

Table 5.8: Two-Dimensional DCT of a Block of Correlated Values.

810 91111 9 912 79.12 0.98 0.64 1.51 0.62 0.86 1.22 0.32
11 8 12 8 11 10 11 10 0.15 1.64 0.09 1.23 0.10 3.29 1.08 2.97
911 91012 9 9 8 1.26 0.29 3.27 1.69 0.51 1.13 1.52 1.33
91210 8 8 9 8 9 1.27 0.25 0.67 0.15 1.63 1.94 0.47 1.30
12 8 9 91210 811 2.12 0.67 0.07 0.79 0.13 1.40 0.16 0.15
8 11 10 12 9 12 12 10 2.68 1.08 1.99 1.93 1.77 0.35 0 0.80
10 10 12 10 12 10 10 12 1.20 2.10 0.98 0.87 1.55 0.59 0.98 2.76
12 91111 9 8 812 2.24 0.55 0.29 0.75 2.40 0.05 0.06 1.14
(a) Original data (b) DCT coefficients
1121 11 0 7.59 9.23 8.33 11.88 7.12 12.47 6.98 8.56
02010 31 3 12.09 797 9.3 11.52 9.28 11.62 10.98 12.39
10320 12 1 11.02 10.06 13.81 6.5 10.82 8.28 13.02 7.54
10102 2010 8.46 10.22 11.16 9.57 8.45 7.77 10.28 11.89
201010100 O 9.71 11.93 8.04 9.59 8.04 9.7 8.59 12.14
31222 00 1 10.27 13.58 9.21 11.83 9.99 10.66 7.84 11.27
12112 11 3 8.34 10.32 10.53 9.9 8.31 9.34 7.47 8.93
21012 00 1 10.61 9.04 13.66 6.04 13.47 7.65 10.97 8&8.89

(c) Quantized (d) Reconstructed data (bad)
Table 5.9: Two-Dimensional DCT of a Block of Random Values.

clear that there are only a few dominant coefficients. Table 5.12 lists the coefficients after
they have been coarsely quantized, so that only four nonzero coefficients remain! The
results of performing the IDCT on these quantized coefficients are shown in Table 5.13.
It is obvious that the four nonzero coefficients have reconstructed the original pattern to
a high degree. The only visible difference is in row 7, column 7, which has changed from
12 to 17.55 (marked in both figures). The Matlab code for this computation is listed in
Figure 5.18.

Tables 5.14 through 5.17 show the same process applied to a Y-shaped pattern,
typical of a discrete-tone image. The quantization, shown in Table 5.16, is light. The
coefficients have only been truncated to the nearest integer. It is easy to see that the
reconstruction, shown in Table 5.17, isn’t as good as before. Quantities that should have
been 10 are between 8.96 and 10.11. Quantities that should have been zero are as big
as 0.86. The conclusion is that the DCT performs well on continuous-tone images but
is less efficient when applied to a discrete-tone image.

166 5. Image Compression

00 10 20 30 30 20 10 00
10 20 30 40 40 30 20 10
20 30 40 50 50 40 30 20
30 40 50 60 60 50 40 30
30 40 50 60 60 50 40 30
20 30 40 50 50 40 30 20
10 20 30 40 40 30 12 10
00 10 20 30 30 20 10 00

Table 5.10: A Continuous-Tone Pattern.

239 1.19 —-89.76 —0.28 1.00 -1.39 -5.03 -0.79
1.18 —-1.39 0.64 0.32 —1.18 1.63 —1.54 0.92
—89.76 0.64 —-0.29 -0.15 0.54 —-0.75 0.71 —-0.43
—0.28 032 —-0.15 —0.08 0.28 —0.38 0.36 —0.22
1.00 -1.18 0.54 0.28 —1.00 1.39 —-1.31 0.79
-1.39 1.63 —-0.75 —0.38 1.39 —-1.92 1.81 —-1.09
-5.03 —1.54 0.71 0.36 —1.31 1.81 —-1.71 1.03
-0.79 092 —-043 -0.22 0.79 -1.09 1.03 —0.62

Table 5.11: Its DCT Coefficients.

239 1 -90 0 0 0O 0 O
0 0 0 0 0 0 0 O
-90 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 00 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O

Table 5.12: Quantized Heavily to Just Four Nonzero Coefficients.

0.65 9.23 21.36 29.91 29.84 21.17 894 0.30
9.26 17.85 29.97 38.52 38.45 29.78 17.55 8.91
21.44 30.02 42.15 50.70 50.63 41.95 29.73 21.09
30.05 38.63 50.76 59.31 59.24 50.56 38.34 29.70
30.05 38.63 50.76 59.31 59.24 50.56 38.34 29.70
21.44 30.02 42.15 50.70 50.63 41.95 29.73 21.09
9.26 17.85 29.97 38.52 38.45 29.78 17.55 8.91
0.65 9.23 21.36 29.91 29.84 21.17 8.94 0.30

Table 5.13: Results of IDCT.

5.5 The Discrete Cosine Transform 167

00 10 00 00 00 00 00 10
00 00 10 00 00 00 10 00
00 00 00 10 00 10 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00

Table 5.14: A Discrete-Tone Image ().

13.75 —-3.11 —-8.17 2.46 3.7 —6.86 —3.38 6.59
4.19 -0.29 6.86 —6.85 —7.13 4.48 1.69 —-7.28
1.63 0.19 6.40 —-481 -299 -1.11 -0.88 —-0.94

—0.61 0.54 5.12 =231 1.30 —-6.04 —2.78 3.05

—1.25 0.52 299 -0.20 3.7 =739 -—2.59 1.16

—0.41 0.18 0.65 1.03 3.87 =519 -—-0.71 —4.76
0.68 —0.15 —0.88 1.28 259 —-1.92 1.10 —-9.05
0.83 —-0.21 -0.99 0.82 1.13 —0.08 1.31 -7.21

Table 5.15: Its DCT Coefficients.

13.7%5 -3 -8 2 3 -6 -3 6
4 -0 6 -6 -7 4 1 -7

1 0 6 -4 -2 -1 -0 -0
—0 0 5 =2 1 -6 -2 3
-1 0 2 =0 3 =7 =2 1
-0 0 0 1 3 -5 -0 -4
0 -0 -0 1 2 -1 1 -9

0 -0 -0 0 1 -0 1 =7

Table 5.16: Quantized Lightly by Truncating to Integer.

-0.13 896 0.55 -0.27 0.27 0.86 0.15 9.22
0.32 0.22 9.10 040 0.84 -0.11 9.36 -0.14
0.00 0.62 -0.20 9.71 -1.30 8.57 0.28 -0.33
-0.58 0.44 0.78 0.71 10.11 1.14 0.44 -0.49
-0.39 0.67 0.07 0.38 &8.82 0.09 0.28 0.41
0.34 0.11 0.26 0.18 893 0.41 0.47 0.37
0.09 -0.32 0.78 -0.20 9.78 0.05 -0.09 0.49
0.16 -0.83 0.09 0.12 9.15 -0.11 -0.08 0.01

Table 5.17: The IDCT. Bad Results.

168 5. Image Compression

% 8x8 correlated values
n=8;
p=[00,10,20,30,30,20,10,00; 10,20,30,40,40,30,20,10; 20,30,40,50,50,40,30,20;
30,40,50,60,60,50,40,30; 30,40,50,60,60,50,40,30; 20,30,40,50,50,40,30,20;
10,20,30,40,40,30,12,10; 00,10,20,30,30,20,10,00];
figure(1), imagesc(p), colormap(gray), axis square, axis off
dct=zeros(n,n);
for j=0:7
for i=0:7
for x=0:7
for y=0:7
det(i+1,j+1)=dct (i+1,j+1)+p(x+1,y+1)*cos((2xy+1)*j*pi/16)*cos ((2*x+1)*i*pi/16) ;
end;
end;
end;
end;
dct=dct/4; dct(1,:)=dct(1,:)*0.7071; dct(:,1)=dct(:,1)*0.7071;
dct
quant=[239,1,-90,0,0,0,0,0; 0,0,0,0,0,0,0,0; -90,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0];
idct=zeros(n,n);
for x=0:7
for y=0:7
for i=0:7
if i==0 ci=0.7071; else ci=1; end;
for j=0:7
if j==0 cj=0.7071; else cj=1; end;
idect (x+1,y+1)=idct(x+1,y+1)+ ...
cixcj*quant (i+1,j+1)*cos ((2*%y+1)*j*pi/16)*cos ((2*x+1)*i*pi/16);
end;
end;
end;
end;
idct=idct/4;
idct
figure(2), imagesc(idct), colormap(gray), axis square, axis off

Figure 5.18: Code for Highly Correlated Pattern.

5.5.2 The DCT as a Basis

The discussion so far has concentrated on how to use the DCT for compressing one-
dimensional and two-dimensional data. The aim of this section is to show why the
DCT works the way it does and how Equations (5.4) and (5.6) were derived. This
section interprets the DCT as a special basis of an n-dimensional vector space. We show
that transforming a given data vector p by the DCT is equivalent to representing it by
this special basis that isolates the various frequencies contained in the vector. Thus,
the DCT coefficients resulting from the DCT transform of vector p indicate the various
frequencies in the vector. The lower frequencies contain the important visual information
in p, whereas the higher frequencies correspond to the details of the data in p and are
therefore less important. This is why they can be quantized coarsely. (What visual
information is important and what is unimportant is determined by the peculiarities of
the human visual system.) We illustrate this interpretation for n = 3, because this is the
largest number of dimensions where it is possible to visualize geometric transformations.

[Note. Tt is also possible to interpret the DCT as a rotation, as shown intuitively
for n = 2 (two-dimensional points) in Figure 5.4. This interpretation [Salomon 07] con-

5.5 The Discrete Cosine Transform 169

siders the DCT as a rotation matrix that rotates an n-dimensional point with identical
coordinates (z,z,...,z) from its original location to the z-axis, where its coordinates
become («, €g, ..., €,) where the various ¢; are small numbers or zeros.|

For the special case n = 3, Equation (5.4) reduces to

2

2 2t 4+ 1

Gy = \/;C’f g Pt COS {(J%)ﬁq , for f=0,1,2.
t=0

Temporarily ignoring the normalization factors y/2/3 and C}, this can be written in
matrix notation as

Go cos0 cos0 cos(Do
Gy | = | cosg cos %’T cos %” p1| =D-p.
Go cos2% cos23T cos25T | | po

Thus, the DCT of the three data values p = (po, p1,p2) is obtained as the product of
the DCT matrix D and the vector p. We can therefore think of the DCT as the product
of a DCT matrix and a data vector, where the matrix is constructed as follows: Select
the three angles 7/6, 37/6, and 57/6 and compute the three basis vectors cos(f6) for
f =0, 1, and 2, and for the three angles. The results are listed in Table 5.19 for the
benefit of the reader.

0 0.5236 1.5708 2.618
cos 00 1 1 1
cosld 0.866 0 —0.866
cos 20 0.5 -1 0.5

Table 5.19: The DCT Matrix for n = 3.

Because of the particular choice of the three angles, these vectors are orthogonal but
not orthonormal. Their magnitudes are /3, v/1.5, and /1.5, respectively. Normalizing
them results in the three vectors vi = (0.5774,0.5774,0.5774), vo = (0.7071,0, —0.7071),
and vy = (0.4082, —0.8165,0.4082). When stacked vertically, they produce the following
3% 3 matrix

0.5774 0.5774 0.5774
M= |0.7071 0 —0.7071 | . (5.8)
0.4082 —0.8165 0.4082

[Equation (5.4) tells us how to normalize these vectors: Multiply each by m, and then
multiply the first by 1/1/2.] Notice that as a result of the normalization the columns of
M have also become orthonormal, so M is an orthonormal matrix (such matrices have
special properties).

The steps of computing the DCT matrix for an arbitrary n are as follows:

1. Select the n angles 6; = (j+0.5)7/n for j =0,...,n—1. If we divide the interval
[0, 7] into n equal-size segments, these angles are the centerpoints of the segments.

170 5. Image Compression

2. Compute the n vectors vy for k =0,1,2,...,n — 1, each with the n components
cos(k0;).
3. Normalize each of the n vectors and arrange them as the n rows of a matrix.

The angles selected for the DCT are 6; = (j 4+ 0.5)7/n, so the components of each
vector vy, are cos[k(j + 0.5)7/n] or cos[k(2j + 1)m/(2n)]. Reference [Salomon 07] covers
three other ways to select such angles. This choice of angles has the following useful
properties (1) the resulting vectors are orthogonal, and (2) for increasing values of k,
the n vectors v, contain increasing frequencies (Figure 5.20). For n = 3, the top row
of M [Equation (5.8)] corresponds to zero frequency, the middle row (whose elements
become monotonically smaller) represents low frequency, and the bottom row (with
three elements that first go down, then up) represents high frequency. Given a three-
dimensional vector v = (v1,vq,v3), the product M-v is a triplet whose components
indicate the magnitudes of the various frequencies included in v; they are frequency
coefficients. [Strictly speaking, the product is M-v’, but we ignore the transpose in
cases where the meaning is clear.] The following three extreme examples illustrate the
meaning of this statement.

1.5

—0.5

Figure 5.20: Increasing Frequencies.

The first example is v = (v,v,v). The three components of v are identical, so they
correspond to zero frequency. The product M-v produces the frequency coefficients
(1.73220,0,0), indicating no high frequencies. The second example is v = (v,0,—v).
The three components of v vary slowly from v to —v, so this vector contains a low
frequency. The product M- v produces the coefficients (0,1.4142v,0), confirming this
result. The third example is v = (v, —v,v). The three components of v vary from
v to —v to v, so this vector contains a high frequency. The product M-v produces
(0,0,1.6329v), again indicating the correct frequency.

These examples are not very realistic because the vectors being tested are short,
simple, and contain a single frequency each. Most vectors are more complex and contain
several frequencies, which makes this method useful. A simple example of a vector with
two frequencies is v = (1,0.33,—0.34). The product M-v results in (0.572,0.948,0)
which indicates a large medium frequency, small zero frequency, and no high frequency.
This makes sense once we realize that the vector being tested is the sum 0.33(1,1,1) +
0.67(1,0,—1). A similar example is the sum 0.9(—1,1, —1)+0.1(1,1,1) = (-0.8,1, —0.8),
which when multiplied by M produces (—0.346,0, —1.469). On the other hand, a vector
with random components, such as (1,0, 0.33), typically contains roughly equal amounts
of all three frequencies and produces three large frequency coefficients. The product

5.5 The Discrete Cosine Transform 171
M-(1,0,0.33) produces (0.77,0.47,0.54) because (1,0,0.33) is the sum
0.33(1,1,1) +0.33(1,0,—1) + 0.33(1, -1, 1).

Notice that if M-v = ¢, then M7 .¢c = M~'.c = v. The original vector v can
therefore be reconstructed from its frequency coefficients (up to small differences due to
the limited precision of machine arithmetic). The inverse M1 of M is also its transpose
M7 because M is orthonormal.

A three-dimensional vector can have only three frequencies, namely zero, medium,
and high. Similarly, an n-dimensional vector can have n different frequencies, which this
method can identify. We concentrate on the case n = 8 and start with the DCT in one
dimension. Figure 5.21 shows eight cosine waves of the form cos(f6;), for 0 < 6; <,
with frequencies f =0,1,...,7. Each wave is sampled at the eight points

s 3T o7 s 97 117 137 157
0j=—, —, =, == = > Ty (5.9)
16 16 16 16 16 16 16 16
to form one basis vector vy, and the resulting eight vectors vy, f =0,1,...,7 (a total
of 64 numbers) are shown in Table 5.22. They serve as the basis matrix of the DCT.
Notice the similarity between this table and matrix W of Equation (5.3).

Because of the particular choice of the eight sample points, the v; are orthogonal,
which is easy to check directly with appropriate mathematical software. After normal-
ization, the v; can be considered either as an 8 x 8 transformation matrix (specifically,
a rotation matrix, since it is orthonormal) or as a set of eight orthogonal vectors that
constitute the basis of a vector space. Any vector p in this space can be expressed as a
linear combination of the v;. As an example, we select the eight (correlated) numbers
p = (0.6,0.5,0.4,0.5,0.6,0.5,0.4,0.55) as our test data and express p as a linear combi-
nation p = > w;v; of the eight basis vectors v;. Solving this system of eight equations
yields the eight weights

wo = 0.506, w; = 0.0143, ws = 0.0115, w; = 0.0439,
wy = 0.0795, ws = —0.0432, ws = 0.00478, w; = —0.0077.

Weight wq is not much different from the elements of p, but the other seven weights
are much smaller. This is how the DCT (or any other orthogonal transform) can lead
to compression. The eight weights can be quantized and written on the output, where
they occupy less space than the eight components of p.

Figure 5.23 illustrates this linear combination graphically. Each of the eight v; is
shown as a row of eight small, gray rectangles (a basis image) where a value of +1 is
painted white and —1 is black. The eight elements of vector p are also displayed as a
row of eight grayscale pixels.

To summarize, we interpret the DCT in one dimension as a set of basis images
that have higher and higher frequencies. Given a data vector, the DCT separates the
frequencies in the data and represents the vector as a linear combination (or a weighted
sum) of the basis images. The weights are the DCT coefficients. This interpretation can
be extended to the DCT in two dimensions. We apply Equation (5.6) to the case n =8

172

5. Image Compression

2
1
1.1'
o 0.5
1 L 2
05 1 1.
0.5 _05
0.5 1.5 2 25 3 -1
1 1
0.5 / 0.5
05 \1 15 2 /25 3 0. 1 1 5> 25
_0.5 _0.5
_1 _1
1 1
0.5 / 0.5 /\
5 1] 15 257 3 05 J1 1
_0.5 _0.5
_1 _1
1 1
0.5 0.5 /\
05 | 1 \15 |2 \25 [3 05/ 1\ 1
_0.5 _0.5
_1 _1

Figure 5.21: Angle and Cosine Values for an 8-Point DCT.

5.5 The Discrete Cosine Transform 173

dct[pw_]:=Plot[Cos[pw t], {t,0,Pi}, DisplayFunction->Identity,
AspectRatio->Automatic];

dcdot [pw_]:=ListPlot [Table[{t,Cos[pw t]1},{t,Pi/16,15Pi/16,Pi/8}],
DisplayFunction->Identity]

Show[dct [0] ,dcdot [0], Prolog->AbsolutePointSize[4],
DisplayFunction->$DisplayFunction]

Show[dct [7],dcdot [7], Prolog->AbsolutePointSize[4],
DisplayFunction->$DisplayFunction]

Code for Figure 5.21.

0 0.196 0.589 0.982 1.374 1.767 2.160 2.553 2.945
cos 00 1 1 1 1 1 1 1 1
cos1l6 0.981 0.831 0.556 0.195 —-0.195 —0.556 —0.831 —0.981
cos20 0.924 0.383 —0.383 —0.924 —-0.924 —0.383 0.383 0.924
cos3f 0.831 —-0.195 —-0.981 —0.556 0.556 0.981 0.195 —0.831
cos4d 0.707 —-0.707 —0.707 0.707 0.707 —-0.707 —0.707 0.707
cos50 0.556 —0.981 0.195 0.831 —0.831 —0.195 0.981 —0.556
cos6f 0.383 —0.924 0.924 —-0.383 —0.383 0.924 —-0.924 0.383
cos70 0.195 —0.556 0.831 —0.981 0.981 —0.831 0.556 —0.195

Table 5.22: The Unnormalized DCT Matrix in One Dimension for n = 8.

Table[N[t],{t,Pi/16,15Pi/16,Pi/8}]
dctplpw_]:=Table[N[Cos[pw t1],{t,Pi/16,15Pi/16,Pi/8}]
dctp[0]

detpl1]

detp[7]

Code for Table 5.22.

>[N I N [(]

w6.506 m
0.0143 -
0.0115
0.0439]
0.0795
—0.0432 []
0.00478
—0.0077 [v |

Figure 5.23: A Graphic Representation of the One-Dimensional DCT.

174 5. Image Compression

to create 64 small basis images of 8 x 8 pixels each. The 64 images are then used as a
basis of a 64-dimensional vector space. Any image B of 8 x 8 pixels can be expressed as
a linear combination of the basis images, and the 64 weights of this linear combination
are the DCT coeflicients of B.

Figure 5.24 shows the graphic representation of the 64 basis images of the two-
dimensional DCT for n = 8. A general element (¢, j) in this figure is the 8 x 8 image
obtained by calculating the product cos(i - s) cos(j - t), where s and ¢ are varied indepen-
dently over the values listed in Equation (5.9) and ¢ and j vary from 0 to 7. This figure
can easily be generated by the Mathematica code shown with it. The alternative code
shown is a modification of code in [Watson 94], and it requires the GraphicsImage.m
package, which is not widely available.

Using appropriate software, it is easy to perform DCT calculations and display the
results graphically. Figure 5.25a shows a random 8 x8 data unit consisting of zeros and
ones. The same unit is shown in Figure 5.25b graphically, with 1 as white and 0 as
black. Figure 5.25¢ shows the weights by which each of the 64 DCT basis images has to
be multiplied in order to reproduce the original data unit. In this figure, zero is shown
in neutral gray, positive numbers are bright (notice how bright the DC weight is), and
negative numbers are shown as dark. Figure 5.25d shows the weights numerically. The
Mathematica code that does all that is also listed. Figure 5.26 is similar, but for a very
regular data unit.

Exercise 5.7: Imagine an 8x8 block of values where all the odd-numbered rows consist
of 1’s and all the even-numbered rows contain zeros. What can we say about the DCT
weights of this block?

It must be an even-numbered day. I do so prefer the odd-numbered days when you're
kissing my *** for a favor.

—From Veronica Mars (a television program)

h

5.5 The Discrete Cosine Transform 175

D S
e b s
IErrreate
SRR E
b o

Figure 5.24: The 64 Basis Images of the Two-Dimensional DCT.
dctplfs_,ft_]:=Table[SetAccuracy[N[(1.-Cos[fs s]Cos[ft t])/2],3],
{s,Pi/16,15Pi/16,Pi/8},{t,Pi/16,15Pi/16,Pi/8}]//TableForm
dctpl0,0]
dctpl0,1]

dctp([7,7]
Code for Figure 5.24.

Needs["GraphicsImage‘"] (* Draws 2D DCT Coefficients *)

DCTMatrix=Table[If [k==0,Sqrt[1/8],Sqrt[1/4]1Cos[Pi(2j+1)k/16]1],
{k,0,7}, {j,0,7}1 //N;

DCTTensor=Array [Outer [Times, DCTMatrix[[#1]],DCTMatrix[[#2]]]&,

{8,8}];
Show [GraphicsArray [Map [GraphicsImage [#, {-.25,.25}]&, DCTTensor,{2}]1]]

Alternative Code for Figure 5.24.

176

10011101
11001011
01100100
00010010
01001011
11100110
11001011
01010010

(a)

4.000
0.081
0.462
0.837
—0.500
—0.167
—0.191
0.122

—0.133
—0.178
0.125
—0.194
—0.635
0
0.648
—0.200

5.

0.637
—0.300
0.095
0.455
—0.749
—0.366
—0.729
0.038

Image Compression

(b)
0.272 —-0.250 —0.181
0.230 0.694 —0.309
0.291 0.868 —0.070
0.583 0.588 —0.281
—0.346 0.750 0.557
0.146 0.393 0.448
—-0.008 -1.171 0.306
—-0.118 0.138 —1.154

(d)

()

—-1.076 0.026
0.875 —0.127
0.021 —0.280
0.448 0.383

—0.502 —0.540
0.577 —0.268
1.155 —0.744
0.134 0.148

Figure 5.25: An Example of the DCT in Two Dimensions.

DCTMatrix=Table [If [k==0,Sqrt[1/8],Sqrt[1/4]Cos[Pi(2j+1)k/16]],
{k,0,7}, {j,0,7}1 //N;
DCTTensor=Array[Outer [Times, DCTMatrix[[#1]],DCTMatrix[[#2]1]%,

{8,8}1;

img={{1,0,0,1,1,1,0,1},{1,1,0,0,1,0,1,13},
{0,1,1,0,0,1,0,0},{0,0,0,1,0,0,1,03},
{0,1,0,0,1,0,1,1},{1,1,1,0,0,1,1,0%},
{1,1,0,0,1,0,1,1},{0,1,0,1,0,0,1,0}3};
ShowImage [Reverse [img]]
dctcoeff=Array[(Plus @@ Flatten[DCTTensor[[#1,#2]] imgl)&,{8,8}];
dctcoeff=SetAccuracy[dctcoeff,4];
dctcoeff=Chop[dctcoeff,.001];
MatrixForm[dctcoeff]
ShowImage [Reverse[dctcoeff]]

Code for Figure 5.25.

01010101
01010101
01010101
01010101
01010101
01010101
01010101
01010101

(a)

5.5 The Discrete Cosine Transform

(b) (c)
4.000 —-0.721 0 —-0.850 0 —-1.273 0 -—-3.625
0 0 0 0

SO O O OO
SO O OO oo
OO O O oo
SO OO O OO
SO OO OO
OO OO O oo
OO OO oo
SO O OO oo

(d)

Figure 5.26: An Example of the DCT in Two Dimensions.

Some painters transform the sun into a yellow spot; others trans-
form a yellow spot into the sun.

—Pablo Picasso

DCTMatrix=Table [If [k==0,Sqrt[1/8],Sqrt[1/4]Cos[Pi(2j+1)k/16]],

{k,0,7},

{j,0,7}1 //N;

DCTTensor=Array[Outer [Times, DCTMatrix[[#1]],DCTMatrix[[#2]]1]&,

{8,8}]1;

img={{0,1,0,1,0,1’0,1},{0’ 3 3 b)1’071}’

1,0,1,0
{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0,1}
{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0 0,1,0,1}

H) ;1}:{0:1:0:1’] :1 };

>+

ShowImage [Reverse[img]]

dctcoeff=Array[(Plus Q@@ Flatten[DCTTensor[[#1,#2]] img])&,{8,8}];

dctcoeff=SetAccuracy[dctcoeff,4];
dctcoeff=Chop[dctcoeff,.001];
MatrixForm[dctcoeff]

ShowImage [Reverse[dctcoeff]]

Code for Figure 5.26.

177

178 5. Image Compression

“@> Intermezzo “«®)>

Statistical Distributions. "
Most people are of medium height, M
relatively few are tall or short,
and very few are giants or dwarves.
Imagine an experiment where we
measure the heights of thousands
of adults and want to summarize
the results graphically. One way
to do this is to go over the heights,
from the smallest to the largest
in steps of, say, 1 cm, and for
each height h determine the num-
ber p, of people who have this o o
height. Now consider the pair ;LEE212}SB;Eﬁiﬁiiéi‘iﬁiﬁ%ﬁiiiﬁé‘fiﬁ”,‘sx], {x,-5,5}]
(1. i) o a point, plot the points Srie o aplacebist i ontd . 6.5,
for all the values of h, and con- Showl[gl, g2]
nect them with a smooth curve. The result will resemble the solid graph in the figure,
except that it will be centered on the average height, not on zero. Such a representation
of data is known as a statistical distribution.

The particular distribution of people’s heights is centered about the average height,
not about zero, and is called a Gaussian (after its originator, Carl F. Gauss) or a normal
distribution. The Gaussian distribution with mean m and standard deviation s is defined

as)
1 1 /x—m
@) = - 2Wexp{2(.)}

This function has a maximum for 2 = m (i.e., at the mean), where its value is f(m)
1/(sv/2m). Tt is also symmetric about = m, since it depends on z according to (x —m)
and has a bell shape. The total area under the normal curve is one unit.

The normal distribution is encountered in many real-life situations and in science.
It’s easy to convince ourselves that people’s heights, weights, and income are distributed
in this way. Other examples are the following;:

]

m The speed of gas molecules. The molecules of a gas are in constant motion. They
move randomly, collide with each other and with objects around them, and change their
velocities all the time. However, most molecules in a given volume of gas move at about
the same speed, and only a few move much faster or much slower than this speed. This
speed is related to the temperature of the gas. The higher this average speed, the hotter
the gas feels to us. (This example is asymmetric, since the minimum speed is zero, but
the maximum speed can be very high.)

s Chateau Chambord in the Loire valley of France has a magnificent staircase, de-
signed by Leonardo da Vinci in the form of a double ramp spiral. Worn out by the
innumerable footsteps of generations of residents and tourists, the marble tread of this

5.6 JPEG 179

staircase now looks like an inverted normal distribution curve. It is worn mostly in
the middle, were the majority of people tend to step, and the wear tapers off to either
side from the center. This staircase, and others like it, are physical embodiments of the
abstract mathematical concept of probability distribution.

» Prime numbers are familiar to most people. They are attractive and important to
mathematicians because any positive integer can be expressed as a product of prime
numbers (its prime factors) in one way only. The prime numbers are thus the building
blocks from which all other integers can be constructed. It turns out that the number of
distinct prime factors is distributed normally. Few integers have just one or two distinct
prime factors, few integers have many distinct prime factors, while most integers have a
small number of distinct prime factors. This is known as the Erdés—Kac theorem.

The Laplace probability distribution is similar to the normal distribution, but is
narrower and sharply peaked. It is shown dashed in the figure. The general Laplace
distribution with variance V' and mean m is given by

L(V,z) = \/;T/exp <—\/€|x - m|> .

The factor 1/v/2V is included in the definition in order to scale the area under the curve
to 1.

Some people claim that Canada is a very boring country. There are no great com-
posers, poets, philosophers, scientists, artists, or writers whose names are inextricably
associated with Canada. Similarly, no Canadian plays, stories, or traditional legends
are as well-known as the Shakespeare plays, Grimm brothers’ stories, or Icelandic sagas.
However, I once heard that the following simple game may be considered Canada’s na-
tional game. Two players start with a set of 15 matches (they don’t have to be smokers)
and take turns. In each turn, a player removes between 1 and 4 matches. The player
removing the last match wins. Your task is to devise a winning strategy for this game
and publicize it throughout Canada. This winning strategy should not depend on any
of the players being Canadian.

5.6 JPEG

JPEG is a sophisticated lossy/lossless compression method for color or grayscale still
images (not videos). It does not handle bi-level (black and white) images very well. It
also works best on continuous-tone images, where adjacent pixels tend to have similar
colors. An important feature of JPEG is its use of many parameters, allowing the user to
adjust the amount of the data lost (and thus also the compression ratio) over a very wide
range. Often, the eye cannot see any image degradation even at compression factors of
10 or 20. There are two operating modes, lossy (also called baseline) and lossless (which
typically produces compression ratios of around 0.5). Most implementations support
just the lossy mode. This mode includes progressive and hierarchical coding. A few

180 5. Image Compression

of the many references to JPEG are [Pennebaker and Mitchell 92], [Wallace 91], and
[Zhang 90].

JPEG is a compression method, not a complete standard for image representation.
This is why it does not specify image features such as pixel aspect ratio, color space, or
interleaving of bitmap rows.

JPEG has been designed as a compression method for continuous-tone images. The
main goals of JPEG compression are the following:

1. High compression ratios, especially in cases where image quality is judged as very
good to excellent.

2. The use of many parameters, allowing knowledgeable users to experiment and achieve
the desired compression/quality trade-off.

3. Obtaining good results with any kind of continuous-tone image, regardless of image
dimensions, color spaces, pixel aspect ratios, or other image features.

4. A sophisticated, but not too complex compression method, allowing software and
hardware implementations on many platforms.

5. Several modes of operation: (a) sequential mode where each image component (color)
is compressed in a single left-to-right, top-to-bottom scan; (b) progressive mode where
the image is compressed in multiple blocks (known as “scans”) to be viewed from coarse
to fine detail; (c) lossless mode that is important in cases where the user decides that no
pixels should be lost (the trade-off is low compression ratio compared to the lossy modes);
and (d) hierarchical mode where the image is compressed at multiple resolutions allowing
lower-resolution blocks to be viewed without first having to decompress the following
higher-resolution blocks.

The name JPEG is an acronym that stands for Joint Photographic Experts Group.
This was a joint effort by the CCITT and the ISO (the International Standards Or-
ganization) that started in June 1987 and produced the first JPEG draft proposal in
1991. The JPEG standard has proved successful and has become widely used for image
compression, especially in Web pages.

The main JPEG compression steps are outlined here, and each step is then described
in detail in a later section.

1. Color images are transformed from RGB into a luminance/chrominance color space
(Section 5.6.1; this step is skipped for grayscale images). The eye is sensitive to small
changes in luminance but not in chrominance, so the chrominance part can later lose
much data, and thus be highly compressed, without visually impairing the overall image
quality much. This step is optional but important because the remainder of the algo-
rithm works on each color component separately. Without transforming the color space,
none of the three color components will tolerate much loss, leading to worse compression.
2. Color images are downsampled by creating low-resolution pixels from the original ones
(this step is used only when hierarchical compression is selected; it is always skipped
for grayscale images). The downsampling is not done for the luminance component.
Downsampling is done either at a ratio of 2:1 both horizontally and vertically (the so-
called 2h2v or 4:1:1 sampling) or at ratios of 2:1 horizontally and 1:1 vertically (2h1v
or 4:2:2 sampling). Since this is done on two of the three color components, 2h2v
reduces the image to 1/3 + (2/3) x (1/4) = 1/2 its original size, while 2h1v reduces it
to 1/3 4 (2/3) x (1/2) = 2/3 its original size. Since the luminance component is not

5.6 JPEG 181

touched, there is no noticeable loss of image quality. Grayscale images don’t go through
this step.

3. The pixels of each color component are organized in groups of 8 x 8 pixels called
data units, and each data unit is compressed separately. If the number of image rows or
columns is not a multiple of 8, the bottom row or the rightmost column are duplicated
as many times as necessary. In the noninterleaved mode, the encoder handles all the
data units of the first image component, then the data units of the second component,
and finally those of the third component. In the interleaved mode, the encoder processes
the three top-left data units of the three image components, then the three data units
to their right, and so on. The fact that each data unit is compressed separately is one of
the downsides of JPEG. If the user asks for maximum compression, the decompressed
image may exhibit blocking artifacts due to differences between blocks. Figure 5.27 is
an extreme example of this effect.

Figure 5.27: JPEG Blocking Artifacts.

4. The discrete cosine transform (DCT, Section 5.5) is then applied to each data unit
to create an 8 x 8 map of frequency components (Section 5.6.2). They represent the
average pixel value and successive higher-frequency changes within the group. This
prepares the image data for the crucial step of losing information. Since DCT involves
the transcendental function cosine, it must involve some loss of information due to the
limited precision of computer arithmetic. This means that even without the main lossy
step (step 5 below), there will be some loss of image quality, but it is normally small.
5. Each of the 64 frequency components in a data unit is divided by a separate number
called its quantization coefficient (QC), and then rounded to an integer (Section 5.6.3).
This is where information is irretrievably lost. Large QCs cause more loss, so the high-
frequency components typically have larger QCs. Each of the 64 QCs is a JPEG param-
eter and can, in principle, be specified by the user. In practice, most JPEG implemen-
tations use the QC tables recommended by the JPEG standard for the luminance and
chrominance image components (Table 5.30).

6. The 64 quantized frequency coefficients (which are now integers) of each data unit are
encoded using a combination of RLE and Huffman coding (Section 5.6.4). An arithmetic
coding variant known as the QM coder can optionally be used instead of Huffman coding.
7. The last step adds headers and all the required JPEG parameters, and outputs
the result. The compressed file may be in one of three formats (1) the interchange

182 5. Image Compression

format, in which the file contains the compressed image and all the tables needed by the
decoder (mostly quantization and Huffman codes tables); (2) the abbreviated format
for compressed image data, where the file contains the compressed image and either no
tables or just a few tables; and (3) the abbreviated format for table-specification data,
where the file contains just tables, and no compressed image. The second format makes
sense in cases where the same encoder/decoder pair is used, and they have the same
tables built in. The third format is used where many images have been compressed by
the same encoder, using the same tables. When those images need to be decompressed,
they are sent to a decoder preceded by a file with table-specification data.

The JPEG decoder performs the reverse steps (which shows that JPEG is a sym-
metric compression method).

The progressive mode is a JPEG option. In this mode, higher-frequency DCT
coefficients are written on the output in blocks called “scans.” Each scan that is read
and processed by the decoder results in a sharper image. The idea is to use the first
few scans to quickly create a low-quality, blurred preview of the image, and then either
input the remaining scans or stop the process and reject the image. The trade-off is
that the encoder has to save all the coefficients of all the data units in a memory buffer
before they are sent in scans, and also go through all the steps for each scan, slowing
down the progressive mode.

Figure 5.28a shows an example of an image with resolution 1024 x 512. The image is
divided into 128 x 64 = 8192 data units, and each is transformed by the DCT, becoming
a set of 64 8-bit numbers. Figure 5.28b is a block whose depth corresponds to the 8,192
data units, whose height corresponds to the 64 DCT coefficients (the DC coefficient
is the top one, numbered 0), and whose width corresponds to the eight bits of each
coefficient.

After preparing all the data units in a memory buffer, the encoder writes them on
the compressed file in one of two methods, spectral selection or successive approximation
(Figure 5.28¢,d). The first scan in either method is the set of DC coefficients. If spectral
selection is used, each successive scan consists of several consecutive (a band of) AC
coefficients. If successive approximation is used, the second scan consists of the four
most-significant bits of all AC coefficients, and each of the following four scans, numbers
3 through 6, adds one more significant bit (bits 3 through 0, respectively).

In the hierarchical mode, the encoder stores the image several times in its output
file, at several resolutions. However, each high-resolution part uses information from the
low-resolution parts of the output file, so the total amount of information is less than
that required to store the different resolutions separately. Each hierarchical part may
use the progressive mode.

The hierarchical mode is useful in cases where a high-resolution image needs to
be output in low resolution. Older dot-matrix printers may be a good example of a
low-resolution output device still in use.

The lossless mode of JPEG (Section 5.6.5) calculates a “predicted” value for each
pixel, generates the difference between the pixel and its predicted value, and encodes the
difference using the same method (i.e., Huffman or arithmetic coding) employed by step
5 above. The predicted value is calculated using values of pixels above and to the left
of the current pixel (pixels that have already been input and encoded). The following
sections discuss the steps in more detail.

5.6 JPEG

1024=8x128
T2]3] 4 | —-mmmmmmees 127 | 128
<|129|130 | | | ceeemmeeee---- 255 | 256
N
X
i 9
Cu] 524,288 pixels 2
— \
0 '
8,192 data units '
62
8065 | | | -eeeemmee-e-- 8191(8192) 63
(a)
0 0 J
1st scan 76-------
1st scan
0
1
0 2
1 i
2nd scan '
62
63
7654
¢
9 2
2 i
3rd scan ,
62
63
E 3rd scan
0 [
1
2 I
62 5 II
63 62 -=
kth scan 63

()

Figure 5.28: Scans in the JPEG Progressive Mode.

183

184 5. Image Compression

5.6.1 Luminance

The main international organization devoted to light and color is the International Com-
mittee on Ilumination (Commission Internationale de I’Eclairage), abbreviated CIE. It
is responsible for developing standards and definitions in this area. One of the early
achievements of the CIE was its chromaticity diagram [Salomon 99], developed in 1931.
It shows that no fewer than three parameters are required to define color. Expressing a
certain color by the triplet (z,y,z) is similar to denoting a point in three-dimensional
space, hence the term color space. The most common color space is RGB, where the
three parameters are the intensities of red, green, and blue in a color. When used in
computers, these parameters are normally in the range 0-255 (8 bits).

The CIE defines color as the perceptual result of light in the visible region of the
spectrum, having wavelengths in the region of 400 nm to 700 nm, incident upon the
retina (a nanometer, nm, equals 10~ meter). Physical power (or radiance) is expressed
in a spectral power distribution (SPD), often in 31 components each representing a
10-nm band.

The CIE defines brightness as the attribute of a visual sensation according to which
an area appears to emit more or less light. The brain’s perception of brightness is
impossible to define, so the CIE defines a more practical quantity called luminance. It is
defined as radiant power weighted by a spectral sensitivity function that is characteristic
of vision (the eye is very sensitive to green, slightly less sensitive to red, and much less
sensitive to blue). The luminous efficiency of the Standard Observer is defined by the CIE
as a positive function of the wavelength, which has a maximum at about 555 nm. When
a spectral power distribution is integrated using this function as a weighting function,
the result is CIE luminance, which is denoted by Y. Luminance is an important quantity
in the fields of digital image processing and compression.

Y 2 Intermezzo “®r

Human Vision and Color. We see light that enters the eye and falls on the
retina, where there are two types of photosensitive cells. They contain pigments that
absorb visible light and hence give us the sense of vision.

One type of photosensitive cells is the rods, which are numerous, are spread all over
the retina, and respond only to light and dark. They are very sensitive and can respond
to a single photon of light. There are about 110,000,000 to 125,000,000 rods in the eye
[Osterberg 35]. The active substance in the rods is rhodopsin. A single photon can be
absorbed by a rhodopsin molecule which changes shape and chemically triggers a signal
that is transmitted to the optic nerve. Evolution, however, has protected us from too
much sensitivity to light and our brains require at least five to nine photons (arriving
within 100 ms) to create the sensation of light.

The other type is the cones, located in one small area of the retina (the fovea).
They number about 6,400,000, are sensitive to color, but require more intense light, on
the order of hundreds of photons. Incidentally, the cones are very sensitive to red, green,
and blue (Figure 5.29), which is one reason why these colors are often used as primaries.
In bright light, the cones become active, the rods are less so, and the iris is stopped
down. This is called photopic vision.

5.6 JPEG 185

We know that a dark environment improves our eyes’ sensitivity. When we enter a
dark place, the rods undergo chemical changes and after about 30 minutes they become
10,000 times more sensitive than the cones. This state is referred to as scotopic vision.
It increases our sensitivity to light, but drastically reduces our color vision.

The first accurate experiments that measured human visual sensitivity were per-
formed in 1942 [Hecht et al. 42].

Each of the light sensors (rods and cones) in the eye sends a light sensation to
the brain that’s essentially a pixel, and the brain combines these pixels to a continuous
image. The human eye is therefore similar to a digital camera. Once we realize this, we
naturally want to compare the resolution of the eye to that of a modern digital camera.
Current digital cameras have from 500,000 sensors (for a cheap camera) to about ten
million sensors (for a high-quality one).

.20 G R
Thus, the eye features a much higher res-
18 olution, but its effective resolution is even
2 16 higher if we consider that the eye can move
<. and refocus itself about three to four times
% § 14 a second. This means that in a single sec-
oy 12 ond, the eye can sense and send to the brain
+~ O
T g about half a billion pixels. Assuming that
f = 10 our camera takes a snapshot once a second,
g_qo 08 the ratio of the resolutions is about 100.
oz Certain colors—such as red, orange,
gE .06 and yellow—are psychologically associated
& 04 with heat. They are considered warm and
B cause a picture to appear larger and closer
02 than it really is. Other colors—such as blue,
0 violet, and green—are associated with cool
400 440480 520 560 600 640 6830 things (air, sky, water, ice) and are therefore
wavelength (nm) called cool colors. They cause a picture to
Figure 5.29: Sensitivity of the Cones. look smaller and farther away.

Luminance is proportional to the power of the light source. It is similar to intensity,
but the spectral composition of luminance is related to the brightness sensitivity of
human vision.

The eye is very sensitive to small changes in luminance, which is why it is useful to
have color spaces that use Y as one of their three parameters. A simple way to do this
is to compute Y as a weighted sum of the R, G, and B color components with weights
determined by Figure 5.29, and then to subtract Y from the blue and red components
and have Y, B—Y, and R — Y as the three components of a new color space. The last
two components are called chroma. They represent color in terms of the presence or
absence of blue (Cb) and red (Cr) for a given luminance intensity.

Various number ranges are used in B — Y and R — Y for different applications.
The YPbPr ranges are optimized for component analog video. The YCbCr ranges are
appropriate for component digital video such as studio video, JPEG, JPEG 2000, and
MPEG.

186 5. Image Compression

The YCbCr color space was developed as part of Recommendation ITU-R BT.601
(formerly CCIR 601) during the development of a worldwide digital component video
standard. Y is defined to have a range of 16 to 235; Cb and Cr are defined to have a
range of 16 to 240, with 128 equal to zero. There are several YCbCr sampling formats,
such as 4:4:4, 4:2:2, 4:1:1, and 4:2:0, which are also described in the recommendation.

Conversions between RGB with a 16-235 range and YCbCr are linear and therefore
simple. Transforming RGB to YCbCr is done by (note the small weight of blue):

Y = (77/256)R + (150/256)G + (29/256)B,
Cb = —(44/256)R — (87/256)G + (131/256)B + 128,
Cr = (131/256)R — (110/256)G — (21/256)B + 128;

while the opposite transformation is

R=Y + 1.371(Cr — 128),
G =Y —0.698(Cr — 128) — 0.336(Cb — 128),
B =Y + 1.732(Cb — 128).

When performing YCbCr to RGB conversion, the resulting RGB values have a
nominal range of 16-235, with possible occasional values in 0-15 and 236-255.

Other color spaces may be useful in special applications, but each space requires
three numbers to describes a color. This interesting and unexpected fact stems from the
way the cones in the retina respond to light. There are three types of cones, known as
S, L, and M. They are sensitive to wavelengths around 420, 564, and 534 nanometers
(corresponding to violet, yellowish-green, and green, respectively). When these cones
sense light of wavelength W, each produces a signal whose intensity depends on how close
W is to the “personal” wavelength of the cone. The three signals are sent, as a tristimulus,
to the brain where they are interpreted as color. Thus, most humans are trichromats
and it has been estimated that they can distinguish roughly 10 million different colors.
This said, we should also mention that many color blind people can perceive only gray
scales (while others may only confuse red and green). Obviously, such a color blind
person needs only one number, the intensity of gray, to specify a color. Such a person is
therefore a monochromat. A hypothetical creature that can only distinguish black and
white (darkness or light) needs only one bit to specify a color, while some persons (or
animals or extraterrestrials) may be tetrachromats [Tetrachromat 07]. They may have
four types of cones in their eyes, and consequently need four numbers to specify a color.

We therefore conclude that color is only a sensation in our brain; it is not part of
the physical world. What actually exists in the world is light of different wavelengths,
and we are fortunate that our eyes and brain can interpret mere wavelengths as the rich,
vibrant colors that so enrich our lives and that we so much take for granted.

Colors are only symbols. Reality is to be found in luminance alone.
—Pablo Picasso

5.6 JPEG 187

5.6.2 DCT

The general concept of a transform is discussed in Section 5.3. The discrete cosine
transform is discussed in some detail in Section 5.5.

The JPEG committee elected to use the DCT because of its good performance,
because it does not assume anything about the structure of the data, and because there
are ways to speed it up (Section 4.6.5 in [Salomon 07]).

The JPEG standard calls for applying the DCT not to the entire image but to data
units (blocks) of 8 x 8 pixels. The reasons for this are: (1) Applying DCT to large blocks
involves many arithmetic operations and is therefore slow. Applying DCT to small data
units is faster. (2) Experience shows that, in a continuous-tone image, correlations
between pixels are short range. A pixel in such an image has a value (color component
or shade of gray) that’s close to those of its near neighbors, but has nothing to do with
the values of far neighbors. The JPEG DCT is therefore executed by Equation (5.6),
duplicated here for n = 8

T . .
1 2z + 1)im 2y + 1)jm
GU :ZCIO‘] E E Py COS <(]_6)> COs <(y]_6)j> y

=0 y=0 (56)

L —
WhereC'fz{i/?’ §>87 and 0<14,5 <7.

The DCT is JPEG’s key to lossy compression. The unimportant image information
is reduced or removed by quantizing the 64 DCT coefficients, especially the ones located
toward the lower-right. If the pixels of the image are correlated, quantization does not
degrade the image quality much. For best results, each of the 64 coefficients is quantized
by dividing it by a different quantization coefficient (QC). All 64 QCs are parameters
that can be controlled, in principle, by the user (Section 5.6.3).

The JPEG decoder works by computing the inverse DCT (IDCT), Equation (5.7),
duplicated here for n = 8

T T

1 (2z 4+ 1)im 2y +1)jm
Py =7 Z Z C;C;G,; cos (16) cos (16 ,
=0 j=0 (5.7)
1 _
where C’f—{\/ﬁ’ f=0,
1, f>0.

It takes the 64 quantized DCT coefficients and calculates 64 pixels p,. If the QCs are the
right ones, the new 64 pixels will be very similar to the original ones. Mathematically,
the DCT is a one-to-one mapping of 64-point vectors from the image domain to the
frequency domain. The IDCT is the reverse mapping. If the DCT and IDCT could be
calculated with infinite precision and if the DCT coefficients were not quantized, the
original 64 pixels would be exactly reconstructed.

5.6.3 Quantization

After each 8 x 8 data unit of DCT coeflicients G;; is computed, it is quantized. This
is the step where information is lost (except for some unavoidable loss because of finite

188 5. Image Compression

precision calculations in other steps). Each number in the DCT coefficients matrix is
divided by the corresponding number from the particular “quantization table” used, and
the result is rounded to the nearest integer. As has already been mentioned, three such
tables are needed, for the three color components. The JPEG standard allows for up to
four tables, and the user can select any of the four for quantizing each color component.
The 64 numbers that constitute each quantization table are all JPEG parameters. In
principle, they can all be specified and fine-tuned by the user for maximum compres-
sion. In practice, few users have the patience or expertise to experiment with so many
parameters, so JPEG software normally uses the following two approaches:

1. Default quantization tables. Two such tables, for the luminance and the chrominance
components, are the result of many experiments performed by the JPEG committee.
They are included in the JPEG standard and are reproduced here as Table 5.30. It is
easy to see how the QCs in the table generally grow as we move from the upper-left
corner to the bottom-right corner. This is how JPEG reduces the DCT coefficients with
high spatial frequencies.

2. A simple quantization table @ is computed, based on one parameter R specified by
the user. A simple expression such as Q;; = 1+ (¢ + j) X R guarantees that QCs start
small at the upper-left corner and get bigger toward the lower-right corner. Table 5.31
shows an example of such a table with R = 2.

16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 99
12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99
14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99
14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99
18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99
24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99
49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99
72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99
Luminance Chrominance

Table 5.30: Recommended Quantization Tables.

5 7 911 13 15
7 9 11 13 15 17
9 11 13 15 17 19
9 11 13 15 17 19 21
9 11 13 15 17 19 21 23
11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29

~ Ot W
~N Ot W

Table 5.31: The Quantization Table 1 + (i + j) X 2.

If the quantization is done correctly, very few nonzero numbers will be left in the
DCT coefficients matrix, and they will typically be concentrated in the upper-left region.

5.6 JPEG 189

These numbers are the output of JPEG, but they are encoded before being written on
the output. In the JPEG literature this process is referred to as “entropy coding,” and
Section 5.6.4 illustrates it in detail. Three techniques are used by entropy coding to
compress the 8 x 8 matrix of integers:

1. The 64 numbers are collected by scanning the matrix in zigzags (Figure 1.12b).
This produces a string of 64 numbers that starts with some nonzeros and typically ends
with many consecutive zeros. Only the nonzero numbers are output (encoded) and are
followed by a special end-of block (EOB) code. This way there is no need to output the
trailing zeros (we can say that the EOB is the run-length encoding of all the trailing
zeros). The interested reader should also consult [Salomon 07] for other methods to
compress binary strings with many consecutive zeros.

Exercise 5.8: Propose a practical way to write a loop that traverses an 8 x 8 matrix
in zigzag.

2. The nonzero numbers are compressed using Huffman coding (Section 5.6.4).
3. The first of those numbers (the DC coefficient, page 156) is treated differently from
the others (the AC coefficients).

She had just succeeded in curving it down into a graceful zigzag, and was going to
dive in among the leaves, which she found to be nothing but the tops of the trees
under which she had been wandering, when a sharp hiss made her draw back in a
hurry.

—Lewis Carroll, Alice in Wonderland (1865)

5.6.4 Encoding

We first discuss point 3 above. Each 8 x 8 matrix of quantized DCT coefficients contains
one DC coefficient [at position (0,0), the top left corner] and 63 AC coefficients. The
DC coefficient is a measure of the average value of the 64 original pixels, constituting
the data unit. Experience shows that in a continuous-tone image, adjacent data units
of pixels are normally correlated in the sense that the average values of the pixels in
adjacent data units are close. We already know that the DC coefficient of a data unit
is a multiple of the average of the 64 pixels that constitute the unit. This implies that
the DC coefficients of adjacent data units don’t differ much. JPEG outputs the first one
(encoded), followed by differences (also encoded) of the DC coefficients of consecutive
data units.

Example: If the first three 8 x8 data units of an image have quantized DC coefficients
of 1118, 1114, and 1119, then the JPEG output for the first data unit is 1118 (Huffman
encoded, see below) followed by the 63 (encoded) AC coefficients of that data unit. The
output for the second data unit will be 1114 — 1118 = —4 (also Huffman encoded),
followed by the 63 (encoded) AC coefficients of that data unit, and the output for the
third data unit will be 1119 — 1114 = 5 (also Huffman encoded), again followed by the
63 (encoded) AC coefficients of that data unit. This way of handling the DC coefficients
is worth the extra trouble, because the differences are small.

Coding the DC differences is done with Table 5.32, so first here are a few words
about this table. Each row has a row number (on the left), the unary code for the row
(on the right), and several columns in between. Each row contains greater numbers (and

190 5. Image Compression

also more numbers) than its predecessor but not the numbers contained in previous rows.
Row i contains the range of integers [—(2? —1), +(2? —1)] but is missing the middle range
[—(271 —1),+(2¢"! — 1)]. Thus, the rows get very long, which means that a simple
two-dimensional array is not a good data structure for this table. In fact, there is no
need to store these integers in a data structure, since the program can figure out where
in the table any given integer x is supposed to reside by analyzing the bits of x.

The first DC coefficient to be encoded in our example is 1118. It resides in row
11 column 930 of the table (column numbering starts at zero), so it is encoded as
111111111110{01110100010 (the unary code for row 11, followed by the 11-bit binary
value of 930). The second DC difference is —4. It resides in row 3 column 3 of Table 5.32,
so it is encoded as 1110|011 (the unary code for row 3, followed by the 3-bit binary value
of 3).

Exercise 5.9: How is the third DC difference, 5, encoded?

Point 2 above has to do with the precise way the 63 AC coefficients of a data unit
are compressed. It uses a combination of RLE and either Huffman or arithmetic coding.
The idea is that the sequence of AC coefficients normally contains just a few nonzero
numbers, with runs of zeros between them, and with a long run of trailing zeros. For each
nonzero number z, the encoder (1) finds the number Z of consecutive zeros preceding x;
(2) finds = in Table 5.32 and prepares its row and column numbers (R and C); (3) the
pair (R, Z) [that’s (R, Z), not (R, C)] is used as row and column numbers for Table 5.33;
and (4) the Huffman code found in that position in the table is concatenated to C (where
C is written as an R-bit number) and the result is (finally) the code emitted by the JPEG
encoder for the AC coefficient x and all the consecutive zeros preceding it.

The Huffman codes in Table 5.33 are not the ones recommended by the JPEG
standard. The standard recommends the use of Tables 5.34 and 5.35 and says that up
to four Huffman code tables can be used by a JPEG codec, except that the baseline
mode can use only two such tables. The actual codes in Table 5.33 are thus arbitrary.
The reader should notice the EOB code at position (0,0) and the ZRL code at position
(0,15). The former indicates end-of-block, and the latter is the code emitted for 15
consecutive zeros when the number of consecutive zeros exceeds 15. These codes are
the ones recommended for the luminance AC coefficients of Table 5.34. The EOB and
ZRL codes recommended for the chrominance AC coefficients of Table 5.35 are 00 and
1111111010, respectively.

As an example consider the sequence

1118,2,0,-2,0,...,0,—1,0,....
——

13

The first AC coefficient 2 has no zeros preceding it, so Z = 0. It is found in Table 5.32
in row 2, column 2, so R =2 and C = 2. The Huffman code in position (R,Z) = (2,0)
of Table 5.33 is 01, so the final code emitted for 2 is 01]|10. The next nonzero coefficient,
—2, has one zero preceding it, so Z = 1. It is found in Table 5.32 in row 2, column 1, so
R =2 and C = 1. The Huffman code in position (R,Z) = (2,1) of Table 5.33 is 11011,
so the final code emitted for 2 is 11011|01.

5.6 JPEG 191

0: 0 0
1: -1 1 10
2: -3 -2 2 3 110
3: -7 -6 -5 -4 4 5 6 7 1110
4: -15 -14 . -9 -8 8 9 10 ... 15 11110
5: -31 -30 -29 ... -17 -16 16 17 ... 31 111110
6: -63 -62 -61 ... -33 -32 32 33 ... 63 1111110
7 -127 -126 -125 ... -65 -64 64 65 ... 127 11111110
14: -16383 -16382 -16381 ... -8193 -8192 8192 8193 ... 16383 111111111111110
15: -32767 -32766 -32765 ... -16385 -16384 16384 16385 ... 32767 1111111111111110
16: 32768 1111111111111111

Table 5.32: Coding the Differences of DC Coefficients.

R Z: 0 1 15

0: 1010 11111111001(ZRL)
1: 00 1100 ... 1111111111110101
2: 01 11011 ... 1111111111110110
3: 100 1111001 ... 1111111111110111
4: 1011 111110110 ... 1111111111111000
5:

11010 11111110110 ... 1111111111111001

Table 5.33: Coding AC Coefficients.

o Exercise 5.10: What code is emitted for the last nonzero AC coefficient, —17

Finally, the sequence of trailing zeros is encoded as 1010 (EOB), so the output for
the above sequence of AC coefficients is 01101101110111010101010. We saw earlier that
the DC coefficient is encoded as 111111111110]1110100010, so the final output for the
entire 64-pixel data unit is the 46-bit number

1111111111100111010001001101101110111010101010.
These 46 bits encode one color component of the 64 pixels of a data unit. Let’s assume
that the other two color components are also encoded into 46-bit numbers. If each
pixel originally consists of 24 bits, then this corresponds to a compression factor of
64 x 24/(46 x 3) ~ 11.13; very impressive!

(Notice that the DC coefficient of 1118 has contributed 23 of the 46 bits. Subsequent
data units encode the differences of their DC coefficient, which may take fewer than 10
bits instead of 23. They may feature much higher compression factors as a result.)

The same tables (Tables 5.32 and 5.33) used by the encoder should, of course,
be used by the decoder. The tables may be predefined and used by a JPEG codec
as defaults, or they may be specifically calculated for a given image in a special pass
preceding the actual compression. The JPEG standard does not specify any code tables,
so any JPEG codec must use its own.

Some JPEG variants use a particular version of arithmetic coding, called the QM
coder, that is specified in the JPEG standard. This version of arithmetic coding is
adaptive, so it does not need Tables 5.32 and 5.33. It adapts its behavior to the image

192

5.

Image Compression

—

)

0 w |

5
A

00
1111000

01
11111000

100
1111110110

1011
1111111110000010

11010
1111111110000011

1100
1111111110000100

11011
1111111110000101

11110001
1111111110000110

111110110
1111111110000111

11111110110
1111111110001000

11100
111111110001010

11111001
111111110001011

1111110111
111111110001100

111111110100
111111110001101

111111110001001
111111110001110

111010
1111111110010001

111110111
1111111110010010

111111110101
1111111110010011

1111111110001111
1111111110010100

1111111110010000
1111111110010101

111011
1111111110011001

1111111000
1111111110011010

1111111110010110
1111111110011011

1111111110010111
1111111110011100

1111111110011000
1111111110011101

1111010
1111111110100001

11111110111
1111111110100010

1111111110011110
1111111110100011

1111111110011111
1111111110100100

1111111110100000
1111111110100101

1111011
1111111110101001

111111110110
1111111110101010

1111111110100110
1111111110101011

1111111110100111
1111111110101100

1111111110101000
1111111110101101

11111010
1111111110110001

111111110111
1111111110110010

1111111110101110
1111111110110011

1111111110101111
1111111110110100

1111111110110000
1111111110110101

oo

111111000
1111111110111001

111111111000000
1111111110111010

1111111110110110
1111111110111011

1111111110110111
1111111110111100

1111111110111000
1111111110111101

111111001
1111111111000010

1111111110111110
1111111111000011

1111111110111111
1111111111000100

1111111111000000
1111111111000101

1111111111000001
1111111111000110

111111010
1111111111001011

1111111111000111
1111111111001100

1111111111001000
1111111111001101

1111111111001001
1111111111001110

1111111111001010
1111111111001111

1111111001
1111111111010100

1111111111010000
1111111111010101

1111111111010001
1111111111010110

1111111111010010
1111111111010111

1111111111010011
1111111111011000

1111111010
1111111111011101

1111111111011001
1111111111011110

1111111111011010
1111111111011111

1111111111011011
1111111111100000

1111111111011100
1111111111100001

11111111000
1111111111100110

1111111111100010
1111111111100111

1111111111100011
1111111111101000

1111111111100100
1111111111101001

1111111111100101
1111111111101010

1111111111101011
1111111111110000

1111111111101100
1111111111110001

1111111111101101
1111111111110010

1111111111101110
1111111111110011

1111111111101111
1111111111110100

| g|Q|®|»]| @

11111111001
1111111111111001

1111111111110101
1111111111111010

1111111111110110
1111111111111011

1111111111110111
1111111111111101

1111111111111000
1111111111111110

Table 5.34: Recommended Huffman Codes for Luminance AC Coefficients.

5.6 JPEG 193
R
7 1 2 3 4 5
6 7 8 9 A
0 01 100 1010 11000 11001
111000 1111000 111110100 1111110110 111111110100
1 1011 111001 11110110 111110101 11111110110
111111110101 111111110001000 111111110001001 111111110001010 111111110001011
2 11010 11110111 1111110111 111111110110 111111111000010
1111111110001100 1111111110001101 1111111110001110 1111111110001111 1111111110010000
3 11011 11111000 1111111000 111111110111 1111111110010001
1111111110010010 1111111110010011 1111111110010100 1111111110010101 1111111110010110
4 111010 111110110 1111111110010111 1111111110011000 1111111110011001
1111111110011010 1111111110011011 1111111110011100 1111111110011101 1111111110011110
5 111011 1111111001 1111111110011111 1111111110100000 1111111110100001
1111111110100010 1111111110100011 1111111110100100 1111111110100101 1111111110100110
6 1111001 11111110111 1111111110100111 1111111110101000 1111111110101001
1111111110101010 1111111110101011 1111111110101100 1111111110101101 1111111110101110
7 1111010 11111111000 1111111110101111 1111111110110000 1111111110110001
1111111110110010 1111111110110011 1111111110110100 1111111110110101 1111111110110110
8 11111001 1111111110110111 1111111110111000 1111111110111001 1111111110111010
1111111110111011 1111111110111100 1111111110111101 1111111110111110 1111111110111111
9 111110111 1111111111000000 1111111111000001 1111111111000010 1111111111000011
1111111111000100 1111111111000101 1111111111000110 1111111111000111 1111111111001000
A 111111000 1111111111001001 1111111111001010 1111111111001011 1111111111001100
1111111111001101 1111111111001110 1111111111001111 1111111111010000 1111111111010001
B 111111001 1111111111010010 1111111111010011 1111111111010100 1111111111010101
1111111111010110 1111111111010111 1111111111011000 1111111111011001 1111111111011010
C 111111010 1111111111011011 1111111111011100 1111111111011101 1111111111011110
1111111111011111 1111111111100000 1111111111100001 1111111111100010 1111111111100011
D 11111111001 1111111111100100 1111111111100101 1111111111100110 1111111111100111
1111111111101000 1111111111101001 1111111111101010 1111111111101011 1111111111101100
E 11111111100000 1111111111101101 1111111111101110 1111111111101111 1111111111110000
1111111111110001 1111111111110010 1111111111110011 1111111111110100 1111111111110101
F 111111111000011 111111111010110 1111111111110111 1111111111111000 1111111111111001
1111111111111010 1111111111111011 1111111111111100 1111111111111101 1111111111111110

Table 5.35:

Recommended Huffman Codes for Chrominance AC Coefficients.

194 5. Image Compression

statistics as it goes along. Using arithmetic coding may produce 5-10% better compres-
sion than Huffman for a typical continuous-tone image. However, it is more complex to
implement than Huffman coding, so in practice it is rare to find a JPEG codec that uses
it.

5.6.5 Lossless Mode

The lossless mode of JPEG uses differencing to reduce the values of pixels before they are
compressed. This particular form of differencing is called predicting. The values of some
near neighbors of a pixel are subtracted from the pixel to get a small number, which
is then compressed further using Huffman or arithmetic coding. Figure 5.36a shows a
pixel X and three neighbor pixels A, B, and C. Figure 5.36b shows eight possible ways
(predictions) to combine the values of the three neighbors. In the lossless mode, the
user can select one of these predictions, and the encoder then uses it to combine the
three neighbor pixels and subtract the combination from the value of X. The result is
normally a small number, which is then entropy-coded in a way very similar to that
described for the DC coefficient in Section 5.6.4.

Predictor 0 is used only in the hierarchical mode of JPEG. Predictors 1, 2, and 3
are called one-dimensional. Predictors 4, 5, 6, and 7 are two-dimensional.

Selection value Prediction
0 no prediction
1 A
2 B
3 C
4 A+B-C
i i 5 A+((B=C)/2)
6 B+ ((A-0C)/2)
7 (A+B)/2

(a) (b)

Figure 5.36: Pixel Prediction in the Lossless Mode.

It should be noted that the lossless mode of JPEG has never been very successful.
It produces typical compression factors of 2, and is therefore inferior to other lossless
image compression methods. Because of this, many JPEG implementations do not
even implement this mode. Even the lossy (baseline) mode of JPEG does not perform
well when asked to limit the amount of loss to a minimum. As a result, some JPEG
implementations do not allow parameter settings that result in minimum loss. The
strength of JPEG is in its ability to generate highly compressed images that when
decompressed are indistinguishable from the original. Recognizing this, the ISO has
decided to come up with another standard for lossless compression of continuous-tone
images. This standard is now commonly known as JPEG-LS and is described, among
other places, in [Salomon 07].

5.6 JPEG 195

5.6.6 The Compressed File

A JPEG encoder outputs a compressed file that includes parameters, markers, and the
compressed data units. The parameters are either four bits (these always come in pairs),
one byte, or two bytes long. The markers serve to identify the various parts of the file.
Each is two bytes long, where the first byte is X’FF’ and the second one is not 0 or
X’FF’. A marker may be preceded by a number of bytes with X’FF’. Table 5.38 lists all
the JPEG markers (the first four groups are start-of-frame markers). The compressed
data units are combined into MCUs (minimal coded unit), where an MCU is either a
single data unit (in the noninterleaved mode) or three data units from the three image
components (in the interleaved mode).

Compressed
image

| Sd)l |Frame Ed)I |

Frame
[Tables] | Frame header | Scanl| [DNL segment] | [Scan2] | ---------- [Scanlast]
- - Sean T
[Tables] Frame header ECSO [RSTO] """"" ECSlast—l [RSTlast—l] ECSIast
Segment0 Segmentlast
MCU MCU ---MCU MCU MCU ---MCU

Figure 5.37: JPEG File Format.

Figure 5.37 shows the main parts of the JPEG compressed file (parts in square
brackets are optional). The file starts with the SOI marker and ends with the EOI
marker. In between these markers, the compressed image is organized in frames. In
the hierarchical mode there are several frames, and in all other modes there is only
one frame. In each frame the image information is contained in one or more scans,
but the frame also contains a header and optional tables (which, in turn, may include
markers). The first scan may be followed by an optional DNL segment (define number
of lines), which starts with the DNL marker and contains the number of lines in the
image that’s represented by the frame. A scan starts with optional tables, followed by
the scan header, followed by several entropy-coded segments (ECS), which are separated
by (optional) restart markers (RST). Each ECS contains one or more MCUs, where an
MCU is, as explained earlier, either a single data unit or three such units.

196

5. Image Compression

Value \ Name Description

Nondifferential, Huffman coding

FFCO SOF, |Baseline DCT

FFC1 SOF; |Extended sequential DCT

FFC2 SOF; |Progressive DCT

FFC3 SOF3; |Lossless (sequential)

Differential, Huffman coding

FFC5 SOF5; |Differential sequential DCT

FFC6 SOFg |Differential progressive DCT

FFC7 SOF; |Differential lossless (sequential)
Nondifferential, arithmetic coding

FFC8 JPG Reserved for extensions

FFC9 SOFy |Extended sequential DCT

FFCA SOF;y |Progressive DCT

FFCB SOF;; |Lossless (sequential)

Differential, arithmetic coding

FFCD SOF;3 |Differential sequential DCT

FFCE SOF,, |Differential progressive DCT

FFCF SOF;5 |Differential lossless (sequential)

Huffman table specification
FFC4 \DHT \Deﬁne Huffman table

Arithmetic coding conditioning specification

FFCC

IDAC [Define arith coding conditioning(s)

Restart interval termination

FFDO-FFD7 \RSTm \Restart with modulo 8 count m

Other markers

FFD8 SOI Start of image
FFD9 EOI End of image
FFDA SOS Start of scan
FFDB DQT |Define quantization table(s)
FFDC DNL Define number of lines
FFDD DRI Define restart interval
FFDE DHP |Define hierarchical progression
FFDF EXP |Expand reference component(s)
FFEO-FFEF |APP, |Reserved for application segments
FFFO-FFFD |JPG,, |Reserved for JPEG extensions
FFFE COM |Comment

Reserved markers
FFO1 TEM |For temporary private use
FF02-FFBF |RES Reserved

Table 5.38: JPEG Markers.

5.6 JPEG 197

5.6.7 JFIF

It has been mentioned earlier that JPEG is a compression method, not a graphics file
format, which is why it does not specify image features such as pixel aspect ratio, color
space, or interleaving of bitmap rows. This is where JFIF comes in.

JFIF (JPEG File Interchange Format) is a graphics file format that makes it pos-
sible to exchange JPEG-compressed images between computers. The main features of
JFIF are the use of the YCbCr triple-component color space for color images (only one
component for grayscale images) and the use of a marker to specify features missing from
JPEG, such as image resolution, aspect ratio, and features that are application-specific.

The JFIF marker (called the APPO marker) starts with the zero-terminated string
JFIF. Following this, there is pixel information and other specifications (see below).
Following this, there may be additional segments specifying JFIF extensions. A JFIF
extension contains more platform-specific information about the image.

Each extension starts with the zero-terminated string JFXX, followed by a 1-byte
code identifying the extension. An extension may contain application-specific informa-
tion, in which case it starts with a different string, not JFIF or JFXX but something that
identifies the specific application or its maker.

The format of the first segment of an APPO marker is as follows:

1. APPO marker (4 bytes): FFDSFFEO.

2. Length (2 bytes): Total length of marker, including the 2 bytes of the “length” field
but excluding the APP0O marker itself (field 1).

3. Identifier (5 bytes): 4A4649460014: This is the JFIF string that identifies the APPO
marker.

4. Version (2 bytes): Example: 010214 specifies version 1.02.

5. Units (1 byte): Units for the X and Y densities. 0 means no units; the Xdensity and
Ydensity fields specify the pixel aspect ratio. 1 means that Xdensity and Ydensity are
dots per inch, 2, that they are dots per cm.

6. Xdensity (2 bytes), Ydensity (2 bytes): Horizontal and vertical pixel densities (both
should be nonzero).

7. Xthumbnail (1 byte), Ythumbnail (1 byte): Thumbnail horizontal and vertical pixel
counts.

8. (RGB)n (3n bytes): Packed (24-bit) RGB values for the thumbnail pixels. n =
Xthumbnail X Ythumbnail.

The syntax of the JFIF extension APP0 marker segment is as follows:

1. APPO marker.

2. Length (2 bytes): Total length of marker, including the 2 bytes of the “length” field
but excluding the APP0 marker itself (field 1).

3. Identifier (5 bytes): 4A4658580016 This is the JFXX string identifying an extension.
4. Extension code (1 byte): 1016 = Thumbnail coded using JPEG. 114 = Thumbnail
coded using 1 byte/pixel (monochromatic). 1314 = Thumbnail coded using 3 bytes/pixel
(eight colors).

5. Extension data (variable): This field depends on the particular extension.

198 5. Image Compression

JFIF is the technical name for the image format better (but inaccurately) known as
JPEG. This term is used only when the difference between the Image Format and the
Image Compression is crucial. Strictly speaking, however, JPEG does not define an
Image Format, and therefore in most cases it would be more precise to speak of JFIF
rather than JPEG. Another Image Format for JPEG is SPIFF defined by the JPEG
standard itself, but JFIF is much more widespread than SPIFF.

—FErik Wilde, WWW Online Glossary

5.7 The Wavelet Transform

The transforms described in Section 5.3 are orthogonal. They transform the original
pixels into a few large numbers and many small numbers. In contrast, the wavelet
transforms of this section decompose an image into bands (regions or subbands) that
correspond to different pixel frequencies and also reflect different geometrical artifacts
of the image. The final (lossy) compression of the image can be very efficient, because
each band can be independently quantized (by an amount that depends on the pixel
frequency it corresponds to) and then encoded. Thus, a wavelet transform may be
the key to efficient compression of images with a mixture of high-frequency and low-
frequency areas. In contrast, images with large uniform (or almost-uniform) areas may
respond better to other compression methods. Reference [Salomon 07] describes several
compression methods that are based on wavelet transforms.

Before we start, here are a few words about the origin of the term wavelet. In
the early 1800s, the French mathematician Joseph Fourier discovered that any periodic
function f can be expressed as a (possibly infinite) sum of sines and cosines. These
functions are represented graphically as waves, which is why the Fourier expansion of a
function f is associated with waves and reveals the frequencies “hidden” in f. Fourier
expansion has many applications in engineering, mainly in the analysis of signals. It
can isolate the various frequencies that underlie a signal and thereby enable the user
to study the signal and also edit it by deleting or adding frequencies. The downside of
Fourier expansion is that it does not tell us when (at which point or points in time)
each frequency is active in a given signal. We therefore say that Fourier expansion offers
frequency resolution but no time resolution.

Wavelet analysis (or the wavelet transform) is a successful approach to the problem
of analyzing a signal both in time and in frequency. Given a signal that varies with
time, we select a time interval, and use the wavelet transform to identify and isolate
the frequencies that constitute the signal in that interval. The interval can be wide,
in which case we say that the signal is analyzed on a large scale. As the time interval
gets narrower, the scale of analysis is said to become smaller and smaller. A large-scale
analysis illustrates the global behavior of the signal, while each small-scale analysis
illuminates the way the signal behaves in a short interval of time; it is like zooming in
the signal in time, instead of in space. Thus, the fundamental idea behind wavelets is
to analyze a function or a signal according to scale.

The continuous wavelet transform [Salomon 07] illustrates the connection between
(1) the time-frequency analysis of continuous functions and (2) waves that are concen-
trated in a small area. This analysis therefore justifies the diminutive “wavelet” instead

5.7 The Wavelet Transform 199

of “wave.” In practical applications, the raw data is normally collected as sets of num-
bers, not as a continuous function, and is therefore discrete. Thus, the discrete, and not
the continuous, wavelet transform is the tool used in practice to analyze digital data
and compress it.

The wavelet transform is a tool that cuts up data or functions or operators into

different frequency components, and then studies each component with a resolution
matched to its scale.

—Ingrid Daubechies (approximate pronunciation “Dobe-uh-shee”),

Ten Lectures on Wavelets (1992)

We start with the Haar transform, originated in work done by Alfred Haar in 1910—
1912 on systems of orthogonal functions [Haar 10]. The Haar transform is the simplest
wavelet transform, and we illustrate it in one dimension. Given an array of n pixels,
where n is a power of 2 (if it is not, we extend the array by appending copies of the
last pixels), we divide it into n/2 pairs of consecutive pixels, compute the average and
the difference of each pair, and end up with n/2 averages followed by n/2 differences.
We then repeat this process on the n/2 averages to obtain n/4 averages followed by
n/4 differences. This is repeated until we end up with one average followed by n — 1
differences.

As an example, consider the eight correlated values 31, 32, 33.5, 33.5, 31.5, 34.5,
32, and 28. We compute the four averages (31 + 32)/2 = 31.5, (33.5 + 33.5)/2 = 33.5,
(31.5434.5)/2 = 33, and (324 28)/2 = 30 and the four differences 31 —32 = —1, 33.5—
33.5 =0, 31.5—34.5 = —3, and 32—28 = 4. The differences are called detail coefficients,
and in this section the terms “difference” and “detail” are used interchangeably. We can
think of the averages as a coarse resolution representation of the original values, and of
the details as the extra data needed to reconstruct the original image from this coarse
resolution. The four averages and four differences are sufficient to reconstruct the original
eight values, but because these values are correlated, the averages and differences feature
additional properties. The averages are